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Identifying the genetic input for fetal growth will help to understand common,

serious complications of pregnancy such as fetal growth restriction. Genomic

imprinting is an epigenetic process that silences one parental allele, resulting

in monoallelic expression. Imprinted genes are important in mammalian fetal

growth and development. Evidence has emerged showing that genes that are

paternally expressed promote fetal growth, whereas maternally expressed

genes suppress growth. We have assessed whether the expression levels of

key imprinted genes correlate with fetal growth parameters during pregnancy,

either early in gestation, using chorionic villus samples (CVS), or in term

placenta. We have found that the expression of paternally expressing insulin-

like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in

CVS tissues significantly correlate with crown–rump length and birthweight,

whereas term placenta expression shows no correlation. For the maternally

expressing pleckstrin homology-like domain family A, member 2 (PHLDA2),

there is no correlation early in pregnancy in CVS but a highly significant nega-

tive relationship in term placenta. Analysis of the control of imprinted

expression of PHLDA2 gave rise to a maternally and compounded grand-

maternally controlled genetic effect with a birthweight increase of 93/155 g,

respectively, when one copy of the PHLDA2 promoter variant is inherited.

Expression of the growth factor receptor-bound protein 10 (GRB10) in term pla-

centa is significantly negatively correlated with head circumference. Analysis of

the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal

transmission of type 1 diabetes protective G allele of rs941576 single nucleotide

polymorphism (SNP) results in significantly reduced birth weight (2132 g). In

conclusion, we have found that the expression of key imprinted genes show a

strong correlation with fetal growth and that for both genetic and genomics

data analyses, it is important not to overlook parent-of-origin effects.
1. Background and results
(a) Fetal growth
Birthweight and its relationship to mortality show one of the strongest links

observed in epidemiology, illustrated by a reverse-J-shaped curve with the

highest mortality observed in the lightest and heaviest groups [1]. Growing

appropriately in utero is essential for a long and healthy life. Fetal growth
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restriction (FGR) affects approximately 6% of pregnancies,

and is identified in approximately half of stillborn fetuses with-

out malformations [2,3]. While the majority of FGR babies

demonstrate catch-up growth, the combination of suboptimal

intrauterine growth followed by accelerated childhood

growth can increase their susceptibility to adult-onset diseases,

including type 2 diabetes, hypertension and coronary artery

disease [4]. Each baby’s unique growth potential in utero is

determined by the successful nutritional and respiratory sup-

port from the mother to the fetus via a placenta, and

disturbing this balance could lead to FGR [5]. Fetal growth is

influenced by both genetic and environmental factors,

although the relevant molecular pathways are still poorly

defined. Identifying key genes and pathways that regulate

fetal growth will allow for better monitoring of intrauterine

growth, maximizing healthy outcomes.
.B
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(b) Genomic imprinting
Genomic imprinting is a process of epigenetic modification on

the genome that causes silencing of one allele according to its

parental origin, resulting in monoallelic expression, without

changing the DNA sequence [6–8]. Sex-specific imprint

marks are heritable to daughter cells, but are erased and re-

established in the germline during gametogenesis [9]. Evidence

from mouse models and rare human imprinting disorders

suggests that genes that are paternally expressed tend to

increase fetal growth, whereas maternally expressed genes

restrict fetal growth. For example, mice knockouts for pater-

nally expressed genes Igf2, mesoderm-specific transcript

(Mest) and paternally expressed gene 3 (Peg3) result in FGR,

whereas mice deficient for maternally expressed genes insu-

lin-like growth factor 2 receptor (Igf2r), H19 and Grb10 show

an overgrowth phenotype [10–14] (table 1). Rare imprinting

disorders such as the growth-restricted phenotype of Silver–

Russell syndrome (SRS) may implicate complex roles involving

both absence of growth promoters such as IGF2 and potential

increase of growth restrictors such as GBR10 (reviewed in [26]).

The kinship theory or parental ‘conflict theory’ predicts

that imprinting may have evolved as a result of competition

between the paternal and maternal genome for maternal

nutrient provision. The paternal genome encourages fetal

growth by extracting nutrients from the mother, whereas

the maternal genome counterbalances this by limiting

resources to the offspring to ensure not only her survival,

but also the equal provision of nutrients among her offspring

[41]. Genomic imprinting is observed predominantly in pla-

cental mammals, and it is, indeed, the placenta which

serves as the key regulatory site for this genomic conflict.

More than 100 imprinted genes have been identified in

mice and approximately half of them are conserved in

humans. In addition to this, many more tissue-specific

human-imprinted loci are being discovered (http://igc.otago.

ac.nz/; http://www.har.mrc.ac.uk/) [42]. In the current pro-

ject, we have studied 13 imprinted genes that are highly

expressed in human term placenta and are known to lead to

growth phenotypes when deficient in mice (table 1). In

addition, we included three non-imprinted genes that were

critical to the action of IGF2, which is a key paternally

expressed imprinted growth promoter (table 2). We have inves-

tigated the expression of these genes in both early and late

gestation using the King’s College London (KCL) CVS cohort

(11–13 weeks of gestation) and the Moore term placenta
cohort, respectively, and correlated these data with important

growth parameters such as birthweight, placental weight and

head circumference.

Also, in a separate analysis reported here, the potential influ-

ence of other variables such as the baby’s sex, gestational age,

parity, maternal weight/body mass index (BMI) and maternal

smoking were tested against gene expression. In some situ-

ations, loss of imprinting (LOI) can occur, leading to biallelic

expression of the gene. Because this could potentially influence

the overall gene dosage, term placenta and CVS samples used in

these expression studies were also investigated to see whether

they retained a normal imprinting pattern, or showed monoal-

lelic expression. In this hybrid review/research article, we

summarize our previous findings together with new data.
(c) Insulin-like growth factor axis and IGF2/H19 locus
The insulin/IGF growth factor ‘axis’ constitutes key regulat-

ory endocrine factors of pre- and postnatal growth. These

include insulin (INS), IGF1, IGF2 and their corresponding

receptors (IR, IGF1R and IGF2R), and six binding proteins

(IGFBP1–6) [48]. INS and IGF1 exclusively bind to IR and

IGF1R, respectively, whereas IGF2 can bind to IGF1R,

IGF2R and IR 11-isoform [49]. IGF2R is located on human

chromosome 6q25.3 and shows maternal expression in only

10% of term placentas and CVS [17,50]. One of its major func-

tions is the lysosomal targeting and degradation of IGF2, thus

acting as a growth suppressor [51]. IGF2 and H19 map to one

of the most intensely studied imprinted gene clusters on

human chromosome 11p15. Their reciprocal imprinting is con-

trolled by differential methylation of imprinting control region

1 (ICR1) which is normally only methylated on the paternal

allele [52]. The unmethylated maternal ICR1 allows the binding

of the CTCF transcription factor, blocking the access of IGF2
promoters to the H19 downstream enhancers, resulting in the

activation of H19 expression. Conversely, the CTCF protein is

prevented from binding to the paternal methylated ICR1,

resulting in monoallelic paternal IGF2 expression owing to

IGF2 promoter interaction with the enhancers. Approximately

50% of the growth-restricted SRS cases show loss of methylation

at ICR1, which could lead to decreased IGF2 expression [24] and

that may well contribute to SRS growth restriction.

In our previous studies, we have shown that IGF2 and

IGF2R expression in term placenta has no correlation with

baby’s birth size parameters. However, their expression

levels in CVS tissues showed a strong positive correlation

with birthweight [17,33], indicating their role as ‘early

growth effectors’. In addition to this study, the expression

levels of H19 (n ¼ 104) relative to the ribosomal protein L19

(L19) endogenous control gene in CVS tissues was measured

by RT-quantitative polymerase chain reaction (qPCR). The

relative expression levels of H19 were correlated to birth

weight in a regression model adjusted for baby’s sex, parity,

gestational age at birth, maternal BMI and smoking habits.

The CVS expression data for IGF2, IGF2R, H19, PHLDA2,

IGF1 and IGF1R were also correlated to CRL at the gestational

age of 12 weeks, using the same regression model, except this

time the gestational age at CRL measurement was used instead

of gestational age at birth. Correlation between H19 expression

and birthweight was not statistically significant ( p ¼ 0.07).

However, there was significant evidence for positive associ-

ation between CRL at 12 weeks and IGF2 expression ( p ¼
0.004; figure 1a), IGF2R expression ( p ¼ 0.03; figure 1b),
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Table 1. Imprinted genes highly expressed in the placenta. Origin, parental origin of the expressed allele; M, maternally expressed; P, paternally expressed;
ncRNA, non-coding RNA; FGR, fetal growth restriction; Dup, duplication; UPD, uniparental disomy; ICR, imprinting control region; LBW, low birthweight; BW,
birthweight; HC, head circumference; CVS, chorionic villus sampling tissues; CRL, crown – rump length; PIP, phosphatidylinositol phosphate lipid; mat del,
maternally inherited deletion; pat del, paternally inherited deletion; T1D, type 1 diabetes; TNDM, transient neonatal diabetes mellitus; BWS, Beckwith –
Wiedemann syndrome; SRS, Silver – Russell syndrome; CNV, copy number variation; asterisk, findings from this study.

locus gene origin description mouse KO phenotypes human growth phenotypes

6q24 PLAGL1 P zinc finger protein FGR, bone malformation, high

neonatal lethality [15]

TNDM ( pUPD6, pDup6q24, ICR

hypomethylation) [16]

6q25 IGF2R M/biallelic clearance of IGF2 fetal and placental overgrowth,

organ and skeletal abnormalities

[11]

CVS expression positively correlated to

BW [17] and CRL*

7p12 GRB10 M/P GF receptor-bound

protein

fetal and placental overgrowth [10] implicated in SRS (mDup7p11.2 – 13)

[18]; term placenta expression

negatively associates with HC*

7q21.3 PEG10 P retrotransposon

derived

embryonic lethal due to placental

malformation [19]

hypermethylation at ICR and reduced

expression in LBW cord blood [20];

upregulated in FGR placenta [21]

7q32.2 MEST P/biallelic a/b hydrolase

fold family

fetal and placental growth

restriction, high postnatal

lethality, abnormal maternal

behaviour [12]

implicated in SRS (mUPD 7q31-qter)

[22]

11p15 H19 M long ncRNA fetal and placental overgrowth

[13,23]

ICR1 hypomethylation [24] and CNV

[25] in SRS

IGF2 P growth factor fetal and placental growth restriction CVS expression positively correlated to

BW [17] and CRL*; implicated in

BWS and Wilm’s tumour [26]

CDKN1C M tumour suppressor gestational fetal and placental

overgrowth [27]

mutated in IMAGe [28], BWS [29] and

SRS [30] patients

SLC22A18 M organic cation

transporter

not reported term placenta expression associated

with HC [31]

PHLDA2 M PH domain, PIP

binding

placental overgrowth [32] highly expressed in lower BW and FGR

placenta [21,33 – 35]; promoter

variant associated with BW [36]

14q32 DLK1 P transmembrane

glycoprotein

pre- and postnatal growth

restriction, high perinatal

lethality, obese postnatally [37]

associated with T1D [38], UPD14

syndromes [26], T1D SNP correlated

to BW*

MEG3 M ncRNA postnatal lethal (mat del), pre- and

postnatal growth restriction, high

perinatal lethality ( pat del) [39]

associated with T1D [38], reduced

expression in FGR placenta [35]

19q13.4 PEG3 P zinc finger protein placental and fetal growth

restriction, abnormal maternal

behaviour [14]

tumour suppressor [40]
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IGF2/IGF1R ratio ( p ¼ 0.03; figure 1c) and H19 expression

( p ¼ 0.04; figure 1d and table 3). These results suggest that

the many members of the IGF axis (IGF2, IGF2R and IGF1R),

and the closely associated H19, shape the growth trajectory

early in pregnancy.

There was no correlation between maternal smoking and

the expression in CVS of the genes tested (those listed above)

in our samples. Nevertheless, we observed an association
between IGF2 expression and parity, whereby IGF2 expres-

sion is higher in the ‘parity greater than one’ group of babies

( p ¼ 0.03; electronic supplementary material, figure S1a); this

is consistent with the role of IGF2 as a positive growth regula-

tor. This observation is interesting as the majority of second

born babies are bigger [36]. We also found evidence that

the maternal BMI was positively correlated with IGF2R
expression ( p ¼ 0.03; electronic supplementary material,



Table 2. Non-imprinted genes highly expressed in the placenta.

locus gene description mouse KO phenotypes human growth phenotypes

7p12 IGFBP3 carrying protein for IGF1 and

IGF2

retinal vessel loss [43] implicated in common cancers [44]

12q23.2 IGF1 growth promoter pre- and postnatal growth restriction,

infertile [45]

pre- and postnatal growth

restriction [46]

15q26.3 IGF1R IGF1 and IGF2 receptor fetal growth restriction and perinatal lethal pre- and postnatal growth

restriction [47]

p = 0.004** p = 0.03*

p = 0.04*p = 0.03*
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Figure 1. Correlation between imprinted gene expression in CVS and CRL. Expression levels of each gene relative to the L19 endogenous control gene were cor-
related to crown – rump length (CRL: mm) using a multiple linear regression model adjusted for maternal BMI, baby’s sex, parity, gestational age when CRL was
measured and maternal smoking habit. Positive correlations with CRL and (a) IGF2 expression (r ¼ 0.77; p ¼ 0.004), (b) IGF2R expression (r ¼ 0.76; p ¼ 0.03), (c)
IGF2/IGF1R ratio (r ¼ 0.74; p ¼ 0.03) and (d ) H19 expression (r ¼ 0.74; p ¼ 0.04) were observed. (Online version in colour.)
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figure S1b) and negatively correlated with IGF1 ( p ¼ 0.046;

electronic supplementary material, figure S1c). This suggests

that it is important to allow for correction for maternal BMI/

weight when investigating the gene expression in association

with fetal growth. Interestingly, H19 was expressed signifi-

cantly higher in males ( p ¼ 0.006; electronic supplementary

material, figure S1e and table S2). The observed sex bias

cannot be explained by LOI (i.e. biallelic expression of H19 in

males only), because all of the CVS tissues tested retained

monoallelic expression (table 4), therefore it is likely to result

from upregulation of the active maternal copy. Males are

normally born bigger than females [36], and the sexual

dimorphism in antenatal biometry has been reported to be evi-

dent around 8–12 weeks of gestation [53]. As H19 is a negative

growth regulator, the higher expression may help prevent male

babies from growing too large.
(d) GBR10
GRB10 is located in the human chromosome 7q12 imprinted

region. Chromosome 7 is implicated in causality for SRS, because

10% of patients show maternal uniparental disomy of chromo-

some 7. FGR is a key feature of SRS, which has been suggested

to result either from the overexpression of a maternally expressed

gene or loss of a paternally expressed growth-promoting gene.

GRB10 encodes a growth factor receptor binding protein that

can interact with receptor tyrosine kinases and intracellular

proteins [54]. GRB10 is imprinted in an isoform- and a tissue-

specific manner [55]. In humans, GRB10 shows biallelic

expression in most tissues, while exhibiting isoform-specific

paternal expression in the brain but with maternal expression

confined to the placental villous trophoblast [56]. In mice,

Grb10 is paternally expressed in the brain, but shows ubiquitous

maternal expression in other tissues [55]. This pattern is roughly



Table 3. The association between mRNA levels and fetal growth in term placenta and CVS. Shading indicates previously published results [17,33].
The correlation significance is indicated by p-values. Correlation coefficient (r) is presented underneath the p-values for the associations reaching significance.
n, number of samples; BW, birth weight; PW, placental weight; HC, head circumference; CRL, crown – rump length; NT, not tested.

gene

CVS term placenta

n BW CRL n BW PW HC

IGF2 260 0.009** 0.004** (r ¼ 0.77) 200 0.9 0.46 0.43

IGF2R 260 0.004** 0.03* (r ¼ 0.76) 200 0.86 0.56 0.7

IGF2/IGF2R 260 0.93 0.58 200 0.5 0.56 0.62

IGF1 200 0.48 0.07 NT NT NT NT

IGF1R 260 0.08 0.93 NT NT NT NT

IGF1/IGF1R 200 0.76 0.06 NT NT NT NT

IGF2/IGF1R 260 0.005** 0.03* (r ¼ 0.74) NT NT NT NT

PHLDA2 260 0.55 0.92 200 0.0001** 0.7 0.95

MEST NT NT NT 200 0.96 0.78 0.42

H19 104 0.07 0.04* (r ¼ 0.74) 86 0.28 0.42 0.51

DLK1 99 0.67 0.25 272 0.07 0.8 0.4

GRB10 NT NT NT 193 0.64 0.69 0.04* (r ¼20.35)

MEG3 NT NT NT 195 0.88 0.54 0.43

PEG10 NT NT NT 110 0.48 0.21 0.32

PEG3 NT NT NT 93 0.87 0.52 0.82

SLC22A18 NT NT NT 78 0.13 0.57 0.52

CDKN1C NT NT NT 81 0.82 0.6 0.98

PLAGL1 NT NT NT 102 0.77 0.91 0.61

PLAGL1imp NT NT NT 102 0.18 0.55 0.064

IGFBP3 NT NT NT 102 0.63 0.62 0.49

Table 4. Summary of imprinting analysis in CVS tissues and term placenta. M, maternal expression; P, paternal expression. %, percentage of samples with
monoallelic expression within informative samples; n.a., not available.

gene parental origin imprinting in term placenta imprinting in CVS polymorphic site

IGF2 P 67/67 (100%) 40/40 (100%) rs680

IGF2R M/biallelic n.a. 3/24 (12%) rs1805075

PHLDA2 M 11/11 (100%) 21/21 (100%) rs13390, rs1056819

MEST P/biallelic 34/42 (81%) n.a. rs10863

H19 M 19/19 (100%) 33/33 (100%) rs2067051

DLK1 P 30/30 (100%) n.a. rs1802710

MEG3 M 9/9 (100%) n.a. rs45617834, rs941575

PEG3 P 14/16 (88%) n.a. rs1055359

PEG10 P 42/42 (100%) n.a. rs13073, rs13226637

GRB10 M ( placenta), P (brain) n.a. n.a. n.a.

SLC22A18 M 23/23 (100%) n.a. rs1048046, rs1048047

PLAGL1 P 11/11 (100%) n.a. rs2076684

CDKN1C M 24/24 (100%) n.a. PAPn repeat
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the opposite of what is seen for Igf2, where it is preferentially

maternally expressed in the adult mouse brain but paternally

expressed in other tissues [57]. Inactivation of the maternal

copy of Grb10 results in fetal and placental overgrowth, indicative
of its role as a potent growth suppressor [10]. In contrast, mice

with a disrupted paternal copy showed normal growth but

increased social dominance behaviour, illustrated by increased

facial barbering (whisker removal) on cage-mates [58].



p = 0.04*
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Figure 2. Negative correlation between GRB10 term placental expression and
head circumference. The expression level of GRB10 relative to the L19 house-
keeping gene was correlated to head circumference (cm) using a multiple
linear regression model adjusted for baby’s sex, parity, gestational age at
birth, maternal weight and smoking habits. GRB10 expression values in log-
arithmic scale was used. Significant negative association was observed for
GRB10 term placenta expression and head circumference (r ¼20.35;
p ¼ 0.04). (Online version in colour.)
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In this study, we have observed a significant negative

association between GRB10 expression (all isoforms) and

head circumference (figure 2, p ¼ 0.04), but no significant

correlation with birthweight ( p ¼ 0.64) or placental weight

( p ¼ 0.69; table 3). The direction of association is consistent

with the role of GRB10 as a negative growth regulator. It is

interesting that the observed association is specific to head

circumference, because it is oppositely imprinted in the

brain. There was no correlation between maternal smoking

and expression of the genes tested in term placenta samples

(electronic supplementary material, table S3). Interestingly,

GRB10 expression showed a positive association with increas-

ing gestational age ( p ¼ 0.03; electronic supplementary

material, figure S2a). This suggests that GRB10 is acting to

suppress the head circumference of the baby close to birth,

because a head size too large for the birth canal would be

detrimental for the mother.
(e) PHLDA2
PHLDA2 is a maternally expressed gene located on the centro-

meric domain of the Chr11p15 imprinting cluster, along with

other maternally expressed genes CDKN1C and SLC22A18.
PHLDA2 encodes a small (144 amino acid) protein with a

Pleckstrin-homology (PH) domain which has the capacity

to bind membrane phosphatidylinositol phosphate lipids

(PIPs) [59], suggesting a role for it as a cell signalling protein.

In line with the kinship theory, Phlda2-deficient mice have an

enlarged placenta, whereas overexpression of Phlda2 in trans-

genic mice results in placental stunting with a modest

reduction in fetal weight [60,61]. We have previously shown

that birth weight is not correlated with PHLDA2 expression

levels in CVS tissues, but has a significant negative correlation

in term placenta [17,33], indicative of a function as a ‘late

growth effector’. Other studies have observed upregulation
of PHLDA2 in FGR placentas [21,34,35], and in first and

second trimester miscarriage placentas [62]; these data all

support the hypothesis that PHLDA2 is an important negative

regulator of growth.

More recently, upregulation of placental PHLDA2 expres-

sion among mothers who smoke during pregnancy has been

reported [63]. In our study, however, we did not observe any cor-

relation between maternal smoking and CVS or term placental

expression of PHLDA2 (electronic supplementary material,

table S3). PHLDA2 expression in CVS and term placenta did

not show correlation with any of the confounding variables

used in the model, except for gestational age. We identified

that reduced PHLDA2 expression in CVS tissues was associated

with advancing gestational age at birth ( p ¼ 0.0092; electronic

supplementary material, figure S1e). Because a shorter gestation

results in smaller babies, its high expression in CVS fits its role as

a growth suppressor.

All the samples used in the analysis showed monoallelic

expression of PHLDA2, demonstrating that LOI cannot account

for the increased expression seen in the smaller birth weight

babies [33]. To further investigate this correlation, we succes-

sively interrogated the nearby region for potential genetic

variations that correlate with fetal growth. We identified a

rare 15 bp repeat sequence variant (RS1) in the PHLDA2 pro-

moter region, which has been shown to reduce the PHLDA2
promoter efficiency [36]. Maternal inheritance of RS1 resulted

in a 93 g increase in birthweight, and when the mother is

homozygous for RS1, the effect on birthweight is 155 g,

suggesting a grand-maternal influence. Paternal inheritance

of RS1 does not influence fetal growth as the variant lies on

the epigenetically silenced paternal allele, emphasizing the

importance of taking into account parent-of-origin effects

when analysing genetic variants. Taken together, these data

show that PHLDA2 is a strong negative growth suppressor

and provide a potential pre-pregnancy test, using the RS1

variant, to predict birthweight.
( f ) DLK1
DLK1 (PREF1 and FA1) is a paternally expressed gene located

in the human chromosome 14q32 imprinting cluster, approxi-

mately 90 kb away from the maternally expressed non-coding

RNA gene MEG3 (also called GTL2). DLK1 encodes a trans-

membrane glycoprotein with six epidermal growth factor-

like repeat motifs [64], known to be involved in adipogenesis

[65]. Dlk1-null mice show high perinatal lethality, pre- and

postnatal growth restriction followed by an obese phenotype

[37], suggesting that it acts as a growth promoter.

In this study, the expression levels of DLK1 (all isoforms) in

CVS (n ¼ 99) and term placenta (n ¼ 272) were correlated to

fetal growth parameters. For the CVS analysis, only the tissues

from extreme birthweight babies (less than 10th centile

and more than 90th centile) were used. Using the regression

model as described for H19, we did not observe any association

between DLK1 expression and birthweight ( p¼ 0.23) or

with CRL ( p¼ 0.16). However, term placental DLK1 expres-

sion did show a weak positive association with birthweight

( p ¼ 0.07; table 3). Although this trend did not reach statistical

significance, the direction of influence is consistent with its

role as a growth promoter. Interestingly, DLK1 expression

showed a positive correlation with increasing parity ( p ¼ 0.05;

electronic supplementary material, figure S2b and table S3),

possibly increasing the size of the later parity babies.
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Figure 3. The association between paternal A/G SNP rs941576 at the DLK1 locus and fetal growth. Partial residual plots illustrating the correlation between paternal
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The rs941576 (G/A) SNP of the DLK1-MEG3 gene region

on human chromosome 14 has previously been identified as

a type 1 diabetes (T1D) susceptibility locus [38]. A reduced

paternal, but not maternal, transmission of the protective G

allele was observed in the T1D-affected individuals, showing

a clear parent-of-origin effect. It was suggested that the

rs941576 variant may affect nearby paternally expressed

genes, including DLK1. Notably, higher birthweight has

been linked to increased T1D risk [66–68]. This prompted

us to test whether paternal transmission of the protective G

allele is associated with (i) lower DLK1 expression and/or

with (ii) reduced birthweight using the DNA samples from

the Moore cohort. Because this is located within intron 6

of MEG3 and 105 kb downstream of DLK1, its potential

influence on MEG3 expression was also tested.

In this study, 295 trio DNA samples from the Moore cohort

were used for genotyping the rs941576 SNP. The resulting

frequencies of the three genotypes were GG: 24%, AG: 45%

and AA: 31%. 112 and 141 babies inherited paternal G and

A bases, respectively, and 119 and 132 babies inherited maternal

G and A, respectively. Using multiple linear regression analy-

sis, we found that paternal or maternal transmission of the

G allele is not correlated with DLK1 expression ( p ¼ 0.47 and

p ¼ 0.63, respectively) or with MEG3 expression ( p ¼ 0.7

and p ¼ 0.085, respectively).

Next, the association between the inheritance of a paternal

G allele with fetal growth was investigated, using a multiple

linear regression model, adjusted for sex of the baby, parity,

gestational age and maternal weight and smoking habit.

Paternal transmission of the G allele was significantly
associated with an average decrease of birthweight by 132 g

( p ¼ 0.01, 95% CI2 232 to 232; figure 3a), and a 0.5 cm

reduction in head circumference of the baby ( p ¼ 0.01, 95%

CI 20.85 to 20.11; figure 3b), but not with placental weight

(20.45 g; p ¼ 0.98, 95% CI 235 to 35; figure 3c). Importantly,

the scale of birthweight reduction (2132 g) associated with

paternal G transmission is similar to that of the maternal smok-

ing (2152 g). Maternal inheritance of the G or A allele was not

associated with birthweight ( p¼ 0.8), head circumference

( p ¼ 0.62) or placental weight ( p ¼ 0.86), consistent with

the observed paternal effect of the protective G allele in

T1D susceptibility.
(g) Other imprinted genes studied
No evidence of correlation between H19, MEG3, PEG10, PEG3,

SLC22A18, CDKN1C, PLAGL1_imp (imprinted transcript),

PLAGL1_all (all transcripts) or IGFBP3 expression, in term pla-

centa, with fetal growth was observed (summarized in table 3).

In addition, we were unable to corroborate a previously

reported association between SLC22A18 expression and head

circumference [31]. We did not observe any LOI in our samples,

except for PEG3, where 2/16 (12%) samples showed biallelic

expression in term placenta. Table 4 details the polymorphic

variants used for each gene and imprinting analysis results.

It was not possible to test all the candidate genes in both

term placenta and for CVS tissues, owing to the limited avail-

ability of material for the latter, whereas some candidates

also showed a level of expression undetected by quantitative

PCR. Therefore, the candidate genes have been prioritized
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according to their functional relevance. Although it would

have been interesting to test GRB10 expression in CVS,

head circumference measurements were not available for

the KCL CVS cohort.
lsocietypublishing.org
Phil.Trans.R.Soc.B
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2. Discussion
Suboptimal or excessive intrauterine growth leads to perinatal

morbidity and mortality, as well as an increased risk for adult-

hood diseases [4]. Finding genetic factors that regulate normal

fetal growth will potentially provide more precise monitoring

of intrauterine growth. Genomic imprinting epigenetically

silences one parental allele resulting in monoallelic expression.

It is now accepted that paternally expressed genes tend to

encourage fetal growth, whereas maternally expressed genes

restrict this. In this paper, the role of imprinted genes on fetal

growth was explored by summarizing and connecting our

previous and current findings. Although DNA methylation

plays a key regulatory role in imprinted gene expression,

their methylation statuses were not assessed in our samples

as CVS is a limited resource. RNA expression variation is

downstream of DNA methylation or other possible DNA regu-

latory factors, and therefore potentially more functionally

relevant. An additional DNA methylation status assessment

would be an interesting aspect for the future study.

(a) The early and late effectors of fetal growth
Combining past and present studies, we have investigated

the correlation between fetal growth measurements and

expression levels of 13 imprinted and three non-imprinted

genes highly expressed in CVS tissues and term placenta

(tables 1 and 2). Our candidate gene approach has identified

some early and late effectors of fetal growth. We have shown

that the CVS expression of IGF2 and IGF2R is positively cor-

related to birthweight, whereas this correlation disappears in

term placenta (table 3). Conversely, PHLDA2 expression in

CVS is not correlated to birthweight, whereas PHLDA2
expression at term is strongly negatively correlated to birth-

weight. Although GRB10 expression in CVS was not tested,

its expression in term placenta showed a strong negative

association with head circumference. These observations

suggest that IGF2 and IGF2R can act to set the growth poten-

tial of the baby early in the pregnancy, and two maternally

expressed growth suppressing genes, PHLDA2 and GRB10,
act to fine tune growth in late pregnancy, potentially to

avoid the risk of giving birth to a macrosomic baby. Impor-

tantly, mouse studies indicate that both Phlda2 and Grb10
control placental growth by mechanisms independent of

Igf2 [10,32], implying the evolution of separate pathways to

control overall fetal size, possibly reflected by the difference

in timing of their functional action.

The first half of placental development is characterized by a

series of important trophoblast proliferation and differentiation

processes, forming mature villous and extravillous structures.

The second half of gestation results in an extensive vasculariza-

tion and placental mass expansion [69]. Early gestational insults

such as maternal diabetes have been associated with long-

term effects on the fetus, owing to their influence on the initial

structural formation of the placenta. It is possible that IGF2
and IGF2R are key regulators of early formation of the placenta,

which then sets the growth capacity of the fetus and placenta for

the rest of gestation. Interestingly, overexpression of mouse
Phlda2 results in placental size reduction, with decreased glyco-

gen storage and failed mobilization, accompanied by

progressive fetal weight loss in late gestation [61]. It has been

suggested that halving Phlda2 expression by silencing the

paternal allele later in gestation may promote energy provision

for the fetus at this time, by increasing the glycogen stores that

will be used in late gestation when there is a particularly high

nutrient demand from the fetus [61].

(b) Environment and other physiological effectors on
gene expression

Although placenta is fetal in origin, it is under the influence

of both maternal and fetal circulation. The placental villi con-

sist of syncytiotrophoblasts facing the maternal blood, with

cytotrophoblasts in the middle and endothelial cells facing

the fetal circulation [69]. Therefore, the mRNA measured in

the placenta could be a result of response to the hormones

and growth factors present in both maternal and fetal circula-

tion. In this study, potential influences of environmental

variations (maternal weight/BMI and maternal smoking)

and physiological variation (baby’s gender, gestational age

and parity) on gene expression were tested.

We did not observe a correlation between maternal smok-

ing and gene expression levels with all genes tested in both

CVS and term placenta (electronic supplementary material,

table S2). This result contradicts the previous report where

the upregulation of placental PHLDA2 in smokers (n ¼ 12)

compared with non-smokers (n ¼ 64) was observed in a

microarray experiment [63]. This could be due to different

sensitivities between the two techniques. However, our cohorts

contained more smokers (n ¼ 27, Moore cohort and n ¼ 33,

CVS cohort; electronic supplementary material, table S1),

which allows for more accurate measure of expression. IGF2R
expression in CVS showed a positive association with mater-

nal BMI (electronic supplementary material, figure S1b and

table S2). This is interesting, because IGF2R has been found

in the syncytiotrophoblast, which is in direct contact with the

maternal blood circulation, and therefore possibly regulating

the effect of fetal IGF2 levels on the mother [70].

Notably, we have found a sex-biased expression of H19
in CVS tissues, where it is expressed more highly in males (elec-

tronic supplementary material, figure S1d). H19 has previously

been reported to show female-biased expression in mouse eyes

[71]. Therefore, H19 expression could be dually regulated

according to the sexes of the parent (imprinting) and also the

baby (sexual dimorphism), in a tissue- and time-specific

manner. Moreover, downregulation of PLAGL1 in FGR pla-

centa of females, but not males, has been reported [72]. This

was not evident in our normal term placenta samples, imply-

ing FGR-specific effects. Insight into the effect of sexual

dimorphism is important for understanding both normal

molecular mechanisms and sex-biased disease conditions.

(c) DLK1, type 1 diabetes and parent-of-origin effect on
fetal growth

Type 1 diabetes (T1D) is caused by autoimmune destruction of

pancreatic beta cells, resulting in insulin deficiency, although

its aetiology is not fully understood [68]. The DLK1-MEG3
imprinting locus has recently been identified as a T1D suscep-

tibility region, marked by the rs941576 SNP in which paternal

inheritance of a G allele was associated with reduced risk [38].
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Figure 4. Current hypothesis on the association between paternal G SNP
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risk of type 1 diabetes. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140074

9

DLK1 is highly expressed in pancreatic islet cells and is

involved in differentiation of pancreatic beta cells, suggesting

its strong functional candidacy [73].

In this study, we found that paternal transmission of the

protective G allele results in a significant decrease of birth-

weight, by 132 g (figure 3a), and head circumference, by

0.5 cm (figure 3b). Of note, higher birthweight has been

linked to increased T1D risk [66–68]. Therefore, paternal

inheritance of the G allele may give protective effect from

T1D via its association with reduced birthweight. This could

also be associated with a decrease in DLK1 expression although

this association did not reach statistical significance. Impor-

tantly, the magnitude of birthweight reduction (2132 g) and

head circumference (20.5 cm) related to the paternal G allele

inheritance was similar to that observed for the increase in

birthweight (þ155 g) and in head circumference (þ0.23 cm)

caused by inheriting a PHLDA2 promoter RS1 allele from a

RS1 homozygous mother [36]. Our current working hypothesis

regarding the relationship between the role of DLK1 in fetal

growth and T1D is described in figure 4 [37,64,65].
3. Conclusion
We have identified that expression of IGF2 and IGF2R in

early placenta (CVS) are positively correlated to CRL and

birthweight, but not in term placenta when the oppositely

maternally expressed genes PHLDA2 and GRB10 act to

negatively regulate growth. We have also identified that the

paternal transmission of the T1D protective G allele of

rs941576 SNP results in a significant reduction in birthweight

( p ¼ 0.01, 95% CI2232 to 232), emphasizing the importance

of accounting for parent-of-origin effects when analysing geno-

mic data. Characterization of genes important in intrauterine

growth will allow a more accurate surveillance of fetal growth

and help identify targets for clinical intervention in suboptimal

pregnancies. During pregnancy, a combination of different

levels of imprinted genes or genetic predispositions will affect

the baby’s birthweight. An additional environmental layer is

added by maternal smoking. Further investigation of all these

candidates is warranted in larger cohorts to identify further

genetic variants that exhibit parent-of-origin associated
growth regulation and to find gene expression variations.

Together with previously known genetic variants associated

with fetal growth (reviewed in [26]), and expression studies,

these may be used as an effective, combined diagnostic tool

to identify and predict growth-restricted and macrosomic

babies, which would provide huge benefits for the short- and

long-term health of both mother and baby.
4. Materials
(a) King’s College London chorionic villus sample cohort
CVS was carried out between 11 and 13 weeks of gestation in

355 singleton pregnancies that were followed by normal live

birth at term. Participants were undergoing CVS for prenatal

diagnosis for chromosomal abnormality at King’s College

Hospital London. The samples used in this study were

obtained from excess CVS tissues from fully ethically con-

sented women, and the research was approved by the King’s

College Hospital Ethics Committee. The medical records of

this cohort are summarized in the electronic supplementary

material, table S1 [17].

(b) Moore cohort
The Moore cohort consists of 302 consented white European trios

recruited at Queen Charlotte’s and Chelsea Hospital between

2003 and 2004 [33]. The placental samples were collected from

ultrasound dated, live birth singleton pregnancies. Each placen-

tal sample was dissected into four pieces near the umbilical cord

insertion point, washed in phosphate-buffered saline, snap-

frozen in liquid nitrogen and stored at 2808C. Parental blood

samples (10 ml) were collected in EDTA tubes. The medical

records and characteristics of the Moore cohort are summarized

in the electronic supplementary, table S1.
5. Methods
(a) DNA and RNA extraction
Total RNA from term placental tissue was extracted using Trizol

reagent (Life Technologies), and treated with TURBO DNase

(Ambion) according to the manufacturers guidelines. Fetal

DNA from 1 g of term placental tissue and parental DNA from

2 ml of whole blood were isolated using a standard phenol–

chloroform protocol. RNA and DNA from CVS tissues were

extracted by the iPrep PureLink total RNA and TrizolPlus

RNA kit, including the DNase treatment and iPrep Charge-

Switch gDNA tissue kit using the iPrep purification instrument

(Life Technologies) following the manufacturer’s instructions.

The quantity and purity of nucleic acid was measured by Nano-

Drop ND-1000 spectrophotometer (Thermo Scientific). Only

RNA samples with the 260/260 ratio in the range of 2+0.2

were used for further study.

(b) Reverse transcription
A first strand of complementary DNA (cDNA) was synthesized

from 1 mg (term placenta) and 100 ng (CVS) of RNA with Molo-

ney murine leukemia virus reverse transcriptase (M-MLV RT)

according to the manufacturer’s instructions (Promega). Dupli-

cate sets of samples without reverse transcriptase were made

as negative controls to detect any genomic contamination in

RNA samples. The conversion of RNA to cDNA was confirmed

by polymerase chain reaction (PCR) with Taq DNA polymerase
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(Bioline) beta-actin (ACTB) primers (electronic supplementary

material table S5).

(c) Quantitative polymerase chain reaction
qPCR was performed using the Power SYBRGreen PCR master

mix (Life Technologies). Each sample was tested in triplicate,

and each plate contained a no-template-control and a cDNA

pool as a reference sample to control for interplate variations.

The reaction plate was placed on the StepOne plus real-time

PCR systems, analysed in the comparative Ct mode. Ribosomal

protein L19 (L19) housekeeping gene was used as an endogenous

control throughout the experiments. Thermal cycle conditions

consist of initial incubation at 508C for 2 min for one cycle, poly-

merase activation at 958C for 10 min for one cycle and 40 cycles

of denaturation at 958C for 15 s, and annealing and extension at

608C for 1 min. The efficiency of the primers was determined by

running a standard curve and calculated by 10(�1=slope) � 1: The

qPCR primer sequences are provided in the electronic sup-

plementary material, table S4. The resulting data were analysed

with the STEPONE v. 2.1 software to obtain relative quantification

(RQ) values, using the formula RQ 5 22DDCt.

(d) Imprinting analysis
Monoallelic expression of genes was investigated by sequencing

gene-specific amplicons from cDNA samples that corresponded

to genomic DNA heterozygous for selected SNPs. Parental DNA

was available for term placental samples, and was used for sequen-

cing to check the parental origin of the expressed allele. SNPs with

relatively high average heterozygosity were chosen for each gene

within the exon covering all isoforms. PCR primer sequences are

summarized in the electronic supplementary material, table S5,

and the list of selected SNPs is found in table 4. Sequencing was

carried out using the BigDye terminator v. 1.1 cycle sequencing

kit (Life Technologies), and the read-out was analysed with

SEQUENCHER v. 4.8 (Gene Codes Corporation).

(e) Statistical analysis
All statistical analyses were performed using the R software (R

Foundation for Statistical Computing). The relative expression
of the candidate genes in term placenta was correlated to the

baby’s birth weight, placental weight and head circumference

using a multiple linear regression model adjusted for baby’s

sex, gestational age, parity, maternal weight/BMI and smoking

habits. These variables used in the model have previously been

established as confounding factors in our previous studies in

the same cohort [33,36]. A logarithmic scale was used for the

expression values when appropriate, and BIC test was performed

to check the fit of the models. A significance threshold of 5% was

used in the analysis.
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