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Objective: To evaluate the use of metabolomics for the first-
trimester detection of maternal metabolic dysfunction 
and prediction of subsequent development of early-onset 
preeclampsia (PE). Study design: This was a case-control study of 
maternal plasma samples collected at 11–13 weeks’ gestation 
from 30 women who had subsequently developed PE requiring 
delivery before 34 weeks and 60 unaffected controls. Nuclear 
magnetic Resonance (NMR) spectroscopy was used to identify 
and quantify metabolomic changes in cases versus controls. 
Both genetic computing and standard statistical analyses 
were performed to predict the development of PE from the 
metabolite concentrations alone as well as the combination 
of metabolite concentrations with maternal characteristics 
and first-trimester uterine artery Doppler pulsatility index (PI). 
Results: Significant differences between cases and controls 
were found for 20 metabolites. A combination of four of these 
metabolites (citrate, glycerol, hydroxyisovalerate, and methio-
nine) appeared highly predictive of PE with an estimated detec-
tion rate of 75.9%, at a false-positive rate (FPR) of 4.9%. The 
predictive performance was improved by the addition of uterine 
artery Doppler PI and fetal crown-rump length (CRL) and with an 
estimated detection rate of 82.6%, at a FPR of 1.6%. Conclusion: 
A profound change in the first-trimester metabolite profile was 
noted in women who had subsequently developed early-onset 
PE. Preliminary algorithms appeared highly sensitive for first 
trimester prediction of early onset PE.

Keywords:  First-trimester screening, metabolomics, 
preeclampsia, uterine artery Doppler

Introduction
Maternal death remains a significant health problem and 
preeclampsia  (PE), which affects about 2% of pregnancies, 
is a major cause of maternal and perinatal mortality and both 
short- and long-term morbidity [1–3]. Recent evidence suggests 
that PE can be subdivided into early-onset disease or early-PE 
requiring delivery before 34 weeks gestation and late-PE with 
the former being associated with a higher incidence of fetal 
growth restriction and fetal morbidities and both short-term and 

long-term maternal mortality and morbidities [4–7]. The under-
lying mechanism for the development of early-PE is thought to 
be impaired trophoblastic invasion of the maternal spiral arteries 
and placental ischemia [8]. In contrast, late-onset PE is often due 
to preexisting maternal vascular disorders or metabolic abnor-
malities with associated mild or nonexistent failed trophoblast 
invasion [9].

Metabolomics is a rapidly developing field of omics tech-
nology that employs high-throughput analytical chemistry to 
characterize the metabolome. The metabolome is defined as the 
complete collection of metabolites (<1500 Da) or small molecules 
found in an organism or in its cells, tissues, and biofluids [10]. 
These metabolites include, but are not limited to amino acids, 
sugars, lipids, vitamins, bases, and other organic molecules. There 
is now the realization, after years of research, that even if we had 
a complete understanding of the genes, transcripts, and proteins 
in a living system this would not come close to describing the 
phenotype of that organism [11]. Metabolomics, in cataloguing 
the large number of metabolites that connect all the different 
pathways in the living cell, appears to come the closest to 
describing the cell phenotype in both normal and disease states. 
Because of its potential for systematic and unbiased cataloguing 
of such a large number of metabolites[12], metabolomics is 
increasingly being used to elucidate disease mechanisms and to 
detect complex disorders. Examples of some of the diseases being 
investigated by metabolomics include coronary artery disease, 
cancer, and diabetes [13].

The objective of the current study is to evaluate the use of 
metabolomics for the first-trimester detection of maternal meta-
bolic dysfunction and prediction of subsequent development of 
early-PE.

Methods
Study population

The data for this case-control study were derived from prospective 
screening for adverse obstetric outcomes in women attending 
their routine first-hospital-visit during pregnancy. In this visit, 
which is held at 11+0–13+6 week’s gestation, we record maternal 
characteristics and medical history, perform an ultrasound scan 
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to determine gestational age from the fetal crown-rump length 
(CRL) [14] and to diagnose major fetal abnormalities [15]. 
We also carry out Doppler ultrasound to measure the uterine 
artery pulsatility index (PI) bilaterally and record the average of 
the two PI values [16]. Serum samples were also obtained and 
stored at −80°C for subsequent laboratory analysis. The women 
were screened between March 2006 and September 2009, and 
they all gave written consent to participate in the study, which 
was approved by the King’s College Hospital research ethics 
committee.

Metabolomic studies were carried out in 30 singleton preg-
nancies that subsequently developed early-PE requiring delivery 
before 34 weeks and 60 unaffected controls. The cases were drawn 
from the screening study population. The controls were also from 
the same population from pregnancies with no complications and 
normal outcome matched to the cases for storage time. The defi-
nition of PE used was that proposed by the International Society 
for the Study of Hypertension in Pregnancy [17]. To summarize, 
diagnostic features of PE were systolic pressures ≥140 or diastolic 
≥90 mm Hg on two or more occasions 4 h apart after 20 weeks 
of gestation in women who were previously normotensive. In 
addition, the patient must have had proteinuria of 300 mg in a 
24-h urine collection or two readings of at least 2+ proteinuria on 
a midstream or catheterized urine specimen in the absence of a 
24-h urine collection.

Nuclear magnetic resonance spectrometry

Nuclear magnetic Resonance (NMR) spectrometry uses radio 
frequency (RF) radiation to obtain information about the constit-
uent atomic nuclei of chemical compounds being investigated. 
Exposure of a sample (under a high magnetic field) to RF radia-
tion results in a change in energy state of the nuclei. When the RF 
energy pulse is discontinued the nuclei return to the lower energy 
state and reemit the stored energy in the form of atom-specific 
or molecule-specific RF waves. The emitted RF energy provides 
a “fingerprint” for identifying the atomic nuclei from which the 
energy is emitted. Based on this, the constituent atoms can be 
identified, and thus the chemical composition of the substance(s) 
being investigated was determined.

Sample preparation and NMR spectroscopy

Plasma and serum samples contain a significant concentration 
of large molecular weight proteins and lipoproteins, which affect 
the identification of the small molecular weight metabolites by 
NMR spectroscopy. A deproteinization step, involving ultrafil-
tration as previously described [18],was therefore introduced 
in the protocol to remove plasma proteins. Prior to filtration, 3 
KDa cutoff centrifugal filter units (Amicon Microcon YM-3), 
were rinsed three times each with 0.5 mL of H2O and centrifuged 
(10,000 rpm for 30 min) to remove residual glycerol bound to 
the filter membranes. Aliquots (350 µL) of each plasma sample 
were then transferred into the centrifuge filter devices and spun 
(10,000 rpm for 20 min) to remove macromolecules (primarily 
protein and lipoproteins) from the sample. If the total volume of 
the sample was under 300 µL, an appropriate amount from a 50 
mM NaH2PO4 buffer (pH 7) was added until the total volume of 
the sample was 300 µL. Any sample that had to have buffer added 
to bring the solution volume to 300 uL, was annotated with the 
dilution factor, and metabolite concentrations were corrected in 
the subsequent analysis. Subsequently, 35 µL of D2O and 15 µL  
of a standard buffer solution (11.667 mM DSS [disodium-2, 
2-dimethyl-2-silcepentane-5-sulphonate], 730 mM imidazole, 
and 0.47% Na N3 in H2O) was added to the sample.

The plasma sample (350 µL) was then transferred to a standard 
Shigemi microcell NMR tube for subsequent spectral analysis. All 
1H-NMR spectra were collected on a 500-MHz Inova (Agilent 
Inc., Palo Alto, CA) spectrometer equipped with a 5-mm ITCN 
Z-gradient PFG cold-probe. 1H-NMR spectra were acquired at 
25°C using the first transient of the NOESY-presaturation pulse 
sequence, chosen for its high degree of quantitative accuracy [19]. 
All free induction decays (FIDs) were zero-filled to 64 K data 
points and subjected to line broadening of 0.5 Hz. The singlet 
produced by the DSS methyl groups was used as an internal 
standard for chemical shift referencing (set to 0 ppm) and for 
quantification all 1H-NMR spectra were processed and analyzed 
using the Chenomx NMR Suite Professional Software package 
version 7.0 (Chenomx Inc, Edmonton, Alberta, Canada). The 
Chenomx NMR Suite software allows for qualitative and quanti-
tative analysis of an NMR spectrum by manually fitting spectral 
signatures from an internal database to the spectrum. Specifically, 
the spectral fitting for metabolite was done using the standard 
Chenomx 500 MHz metabolite library. Typically, 90% of visible 
peaks were assigned to a compound and more than 90% of the 
spectral area could be routinely fit using the Chenomx spectral 
analysis software. Most of the visible peaks are annotated with a 
compound name. It has been previously shown that this fitting 
procedure provides absolute concentration accuracy of 90% or 
better. Each spectrum was processed and analyzed by at least two 
NMR spectroscopists to minimize compound misidentification 
and misquantification. We used sample spiking to confirm the 
identities of assigned compound. Sample spiking involves the 
addition of 20–200 µM of the suspected compound and exami-
nation of the resulting spectra to determine whether the relative 
NMR signal intensity changed as expected.

Statistical analysis

Data normalization is critical to creating a normal or Gaussian 
distribution of metabolite values. This allows conventional statis-
tical tests to be performed, and it simplifies data interpretation. 
There are many different normalization options available – here 
we used log scaling normalization. Principle component analysis 
(PCA) is an unsupervised classification technique for trans-
forming a complex collection of data points such that the impor-
tant properties of the sample can be more simply displayed along 
the X- and Y- axes. PCA involves calculating correlation coeffi-
cients between sets of data and then determining eigenvalues and 
eigenvectors through linear algebraic transformations. The result 
is a set of “vectors” of different metabolites which can be used 
to plot out the metabolite data on an X–Y cluster plot. The first 
and most significant vector is called the first-principal compo-
nent (X axis), and the second most significant vector is called the 
second-principal component (Y axis). If the data are separable, 
it should be possible to see two sets of clusters. Two clusters 
indicate that there are some significant metabolic or metabolite 
differences between the two sets of samples, that is, disease versus  
normals [20].

Partial least squares discriminant analysis (PLS-DA) is a 
supervised classification technique that is widely utilized in 
metabolomic analysis. PLS-DA is used to enhance the separation 
between the groups by rotating the PCA components for maximum 
separation. This procedure allows a better identification and 
understanding of the variables most responsible for separating 
the two groups and is the next step used if no PCA separation is 
observable. In this technique, the samples are labeled (early-PE and 
normal). The data are then processed in a manner similar to PCA, 
but with the requirement that the method must try to separate 
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the two samples as best it can. However, false determination of 
separation between the two groups can occur. As a test to see if 
this separation is not just due to chance, permutation testing was 
used. This involves randomly re-labeling the metabolomic data 
and then running the PLS-DA again. This is performed repeatedly 
(2000 times), with different random labelings. After this is done, 
one calculates the p value or the probability that the first separation 
was a random event due to chance. The MetaboAnalyst program 
was used to perform all univariate and multivariate (PCA and 
PLS-DA) statistical analyses of the metabolomic data [21]. The 
important metabolites were ranked by Variable Importance in 
Projection or VIP score, which is a weighted sum of squares of the 
PLS loadings. This s a plot of the significant metabolites with their 
relative importance expressed as a numerical value on the X-axis. 
The higher the VIP value, the greater is the metabolites relative 
contribution in distinguishing the early-PE from control groups. 
Widely recommended statistical procedures were followed for 
metabolomic analysis [22].

A predictive model for PE: Mean (SD) metabolite concentra-
tions in early-onset PE versus controls were compared. Stepwise 
logistic regression analyses were performed with early-onset PE 
as the dependent variable and metabolites as the independent or 
determinant variables. All metabolites with p ≤ 0.10 on univariate 
analysis were intially entered into the regression. Other variables 
including fetal CRL and maternal demographic and medical 
status (racial origin, weight, height, smoking, method of concep-
tion, previous pregnancy with or without PE, diabetes mellitus, 
chronic hypertension) were combined with metabolite concentra-
tions and run in the regression analyses. Finally, regression anal-
yses including first-trimester uterine artery PI and the preceding 
metabolomic and other maternal markers were performed for the 
prediction of early-PE. Based on these analyses, several regres-
sion equations for predicting the individual risk of early-PE were 
developed. Individual risk or probability of early-PE was calcu-
lated for each patient in the study. Different probability thresholds 
(e.g. individual probability of early-PE from 1 > 1/2, >1/10, >1/20, 
>1/30, up to >1/100) were each used serially to define an increased 
risk of early-PE. Using each cutoff value as a screening test, paired 
sensitivity (defined as the percentage of early-PE cases with prob-
ability value above this threshold) and specificity (percentage of 
normal cases with calculated probability of having early-PE below 
this threshold), were calculated. FPR, defined as 1-specificity, 
can then be easily determined from the specificity value. Using 
multiple different probability threshold values, a series of paired 
sensitivity and FPR values were generated. Thereafter, a receiver-
operator characteristic curve is plotted with sensitivity values on 
the Y-axis and the corresponding FPR on the X-axis. The area 
(AUC [23]) under the ROC curve indicates the accuracy of a test 
for correctly identifying a disorder, that is, early-PE cases from 
controls, with an AUC = 1 indicating a perfect test. The 95% CI 
and p values for the AUC curves were also calculated.

Genetic computing: More recent approaches to the analysis of 
the torrent of data generated by “omics” analyses have been devel-
oped [24,25]. Genetic computing or programming is a branch of 
evolutionary computing which has been around since the 1950s. 
Genetic computing is thought to be superior to conventional 
statistical analysis in explaining the differences between healthy 
and diseased individuals and in finding the most significant 
and interesting differences between groups. It generates rules by 
which an optimal number of variables can be selected from a large 
number of exploratory variables, for example, metabolite concen-
trations, and also optimally selects the interactions between these 
variables for the prediction of the outcomes of interest such as 

the presence or absence of PE. A highly accurate classification 
of individuals into disease and nondisease groups is generated. 
TheGmax (from Genetics Consultant Ltd) software program is an 
evolutionary modeling tool that optimizes nonparametric data-
mining objectives. Version 11.09.23 (www.thegmax.com) was 
used for evolutionary computing analysis.

Results
Pertinent maternal and fetal characteristics in the early-PE and 
controls are compared in Table I. The only significant difference 
was in uterine artery PI which was higher in the PE group. A total 
of 42 metabolites were identified and quantified in the maternal 
plasma samples, and significant differences between the early-PE 
cases and controls were found for 20 of the metabolites when 
appropriate nonparametric analysis is made for metabolites that 
are nonnormally distributed. Five metabolites were at borderline 
significance using conventional statistical analysis (Table II). It 
is possible that significance may be found in the latter group, if 
a larger number of cases are analyzed. A number of the control 
patients in our study had exceptionally high levels (40× normal) 
of choline, whereas most of the early-PE patients had normal or 
below normal levels (<20 µM) of choline. This suggests that these 
high choline controls could possibly be due to the use of choline 
supplements (400–500 mg/day). The separation between the 
cases of early-PE and controls from the PCA analysis of the NMR 
data is shown in Figure 1. The PLS-DA analysis resulted in a clear 
separation between the groups (Figure 2). Permutation testing 
demonstrated that the observed separation was not by chance (p 
< 0.005). A VIP plot in which the metabolites were ranked by 
their contribution to distinguishing the cases of early-PE from 
controls is shown in Figure 3. The greater the distance from the 
Y-axis, the greater is the contribution of a particular metabolite 
in distinguishing cases from controls. This plot also indicates 
whether the metabolite concentration is increased or decreased 
in cases relative to controls.

Two models were developed, using logistic regression analysis, 
for the prediction of early-PE; one evaluated the following 
independent variables: four metabolites (citrate, glycerol, 
hydroxyisovalerate, methionine) in combination with maternal 
characteristics (weight and the presence/absence of medical 
disorders) and another evaluated three metabolites (citrate, 
glycerol, hydroxyisovalerate) in combination with maternal 
characteristics (parity and the presence or absence of medical 
disorders) and uterine artery PI and fetal CRL. The estimated 

Table I.  Comparison of the early preeclampsia and control groups.

Parameter
Early 

preeclampsia Control p value
Number of cases 30 60 –
Maternal age in years, mean (SD) 30.6 (6.8) 31.8 (5.8) 0.41
Racial origin, n (%) 0.13
  White 32 (52.5) 10 (34.5)
  Black 22 (36.1) 16 (55.2)
  Asian 7 (11.5) 2 (6.9)
  Other 0 (0) 1 (3.4)
Nullipara (%) 47.5 41.4 0.65
Weight in kg, mean (SD) 72.4 (17.0) 66.8 (14.9) 0.10
Crown-rump length in mm, mean 
(SD)

63.3 (8.6) 65.4 (8.5) 0.28

Uterine pulsatility index (MoM), 
mean (SD)

1.5 (0.5) 0.95 (0.3) <0.001

MoM, multiples of median for gestational age.
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performance of screening for early-PE by these models at an 
approximate risk threshold of >1 in 2 for early-PE is summarized 
in Table III which is based on standard statistical analysis with the 
corresponding ROC curves without and with inclusion of Doppler 
measurements demonstrated in Figures 4 and 5, respectively. In 
the first model (without Ut-PI) Table III, the estimated detection 

rate of early-PE was 75.9%, at a FPR of 4.9%, and the respective 
values for the second model which included uterine Doppler PI 
were 82.6% and 1.6%. Ut PI by itself had a 40% detection rate at 
8.2% FPR.

The results of genomic computing analysis using a minimum 
(parsimonious model) number of predictors are shown in  
Table IV. Two models were developed, one using metabolites 
(glutamine, pyruvate, propylene glycol, trimethylamine, hydroxy 
butyrate) in combination with maternal characteristics (weight 
and medical disorder) and another using metabolites (glutamine, 
pyruvate, propylene glycol, trimethylamine, hydroxybutyrate, 
carnitine, hydroxyisovalerate) in combination with uterine artery 
PI. The diagnostic sensitivities at low FPRs are shown in Table IV. 
The model that excluded uterine Doppler measurements also had 
a 70% detection rate at 15% FPR, whereas the model that included 
uterine Doppler measurements showed a increase in detection 
rate to 90% while simultaneously lowering the FPR to 11%. 
Complex models using a larger number of predictors achieved 
even greater areas under the ROC curves and thus diagnostic 
accuracy (not shown).

Discussion
The findings of this case-control study demonstrate the potential 
value of metabolomics in the first-trimester prediction of 
early-PE. Algorithms combining metabolites in maternal plasma 
with uterine artery PI at 11–13 weeks’ gestation could identify 
more than 80% of pregnancies that subsequently developed 
early-PE at a FPR of less than 2%.

Metabolomics is often regarded as the newest member of 
the “omics” family and is now being extensively applied for 
the development of disease biomarkers and to understand 
the pathogenesis of complex and formerly poorly understood 
disorders. As a consequence, there has been a meteoric increase 
in the number of publications on this topic, from 1 publication in 
1997 to 1503 in 2009 [26]. We applied NMR-based metabolomics 
to determine the diagnostic accuracy of using small molecule 
metabolites from maternal plasma to predict the development 
of early-onset PE. Using standardized metabolomic analytic 

Table II.  Metabolite concentrations in early preeclampsia and controls.

Metabolite

Early-PE 
(concentration: 

µM/L)
Controls (concen-

tration: µM/L)
p valueMean (SD) Mean (SD)

Number of cases 30 60 –
Hydroxybutyrate_2 21.4 (5.6) 19.5 (7.4) 0.25
Hydroxybutyrate_3 31.6 (19.1) 27.0 (16.2) 0.44
Hydroxyisovalerate_3a 9.2 (1.7) 7.6 (3.1) 0.01
Acetamide 9.6 (5.4) 10.0 (6.3) 0.96
Acetatea 17.9 (6.0) 48.4 (50.4) <0.001
Acetoacetate 14.5 (5.1) 18.8 (9.7) 0.59
Acetone 14.5 (3.6) 17.2 (20.3) 0.57
Alaninea 263.8 (51.5) 332.1 (184.2) 0.02
Arginine 113.4 (16.5) 124.2 (28.8) 0.056
Asparagine 36.5 (17.2) 34.5 (14.5) 0.48
Betaine 29.2 (6.9) 25.8 (8.8) 0.31
Carnitine 30.2 (6.3) 31.8 (14.1) 0.70
Cholinea 10.4 (2.6) 143.9 (277.4) 0.001
Citrate 85.9 (19.1) 79.3 (19.3) 0.06
Creatine 34.7 (10.6) 37.4 (13.0) 0.06
Creatinine 56.8 (11.8) 56.7 (14.5) 0.74
Dimethylamine 3.5 (1.4) 4.0 (2.7) 0.219
Ethanol 33.1 (22.3) 49.3 (30.2) 0.08
Formatea 12.4 (4.5) 19.3 (14.8) 0.032
Glucosea 4194.1 (1229.6) 3702.2 (713.5) (0.019)
Glutaminea 331.0 (57.2) 288.2 (82.0) 0.007
Glycerola 166.5 (42.5) 484.2 (341.4) <0.001
Glycinea 188.0 (42.8) 239.6 (106.1) (0.035)
Isobutyrate 6.3 (2.1) 6.3 (2.1) 1.0
Isoleucinea 37.6 (9.6) 46.2 (19.3) 0.023
Isopropanola 5.9 (4.1) 38.4 (98.8) (0.034)
Lactate 1006.2 (396.8) 1035.6 (505.9) 0.78
Leucinea 67.5 (15.5) 96.9 (74.9) 0.003
Malonate 16.8 (6.7) 18.9 (9.8) 0.34
Methioninea 20.6 (4.2) 23.5 (7.1) (0.024)
Ornithine 36.1 (11.9) 38.2 (15.7) 0.18
Phenylalaninea 62.9 (12.1) 79.6 (42.7) 0.002
Proline 138.6 (52.0) 142.6 (58.5) 0.067
Propylene_glycola 9.9 (4.9) 8.0 (3.4) (0.04)
Pyruvatea 89.3 (27.0) 71.3 (26.7) (0.006)
Serinea 115.5 (23.8) 150.3 (84.3) 0.004
Succinatea 4.3 (1.6) 12.4 (13.9) 0.007
Threoninea 127.1 (29.0) 145.9 (60.3) 0.025
Trimethylaminea 13.3 (2.0) 11.2 (3.1) (0.008)
Tyrosine 54.1 (15.3) 58.0 (22.3) 0.21
Valine 119.1 (29.5) 129.8 (51.1) 0.22
Methylhistidine 50.7 (12.9) 50.0 (14.6) 0.75
The p values in brackets are based on Mann–Whitney U test for biomarkers with 

non-normal distributions.
aMetabolites with statistically significantly different concentrations in the early-PE cases 

compared with controls.
PE, preeclampsia.

Figure 1.  Principle component analysis plot showing the separation between 
early preeclampsia (in green) and control (in red) for nuclear magnetic 
resonance spectrometry.
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techniques and commonly recommended statistical approaches 
[27], we found marked differences in the metabolomic profile in 
the first trimester of women that several months later developed 
early-PE compared with normal controls. The results are all the 
more striking because we did not control for the many other 
potential sources of variability in the metabolite profile, including 

time of day, diet, fasting versus nonfasting state and stress. 
Normalizing for these many potential variables could possibly 
have further improved the separation achieved between early-PE 
and normal cases.

The strength of metabolomics is that it is not hypothesis driven 
and can provide new understanding into the pathogenesis of 

Figure 2.  Separation between the cases of early preeclampsia (in green) and controls (in red) in the partial least squares discriminant analysis two dimensional 
score plot (a) and three dimensional score plot (b).

Figure 3.  Variable Importance in Projection (VIP) plot indicating the most 
discriminating metabolite in descending order of importance.

Table III.  Estimated performance of screening for early preeclampsia.

Regression model
AUROC 

 (95% CI)
Sensitivity  

(%)
FPR  
(%)

Metabolitesa 0.904 (0.828, 0.98) 75.9 4.9
Metabolitesb, uterine artery PI,  
and fetal CRL

0.98 (0.95, 1.00) 82.6 1.6

aCitrate, glycerol, hydroxyisovalerate, methionine.
bAcetate, glycerol, hydroxyisovalerate.
AUROC, area under the receiver-operating characteristic curve; CI, confidence interval; 

CRL, crown-rump length; FPR, false-positive rate; PI, pulsatility index.

Figure 4.  Receiver-operator characteristic (ROC) curve for prediction of 
early-onset preeclampsia: Metabolite-only Algorithm. Area under ROC 
curve = 0.904 (p < 0.001).

Table IV.  Estimated performance of screening for early preeclampsia using 
genetic computing analysis.
Regression model AUROC Sensitivity (%) FPR (%)
Metabolitesa, maternal weight, and 
medical disorders

0.84 50 5.0

Metabolitesb, uterine artery PI 0.94 60 3.0
aGlutamine, pyruvate, propylene glycol, trimethylamine, hydroxy butyrate 

(parsimonious model).
bPyruvate, propylene glycol, trimethylamine, hydroxy isovalerate-3 (parsimonious 

model).
AUROC, area under the receiver-operating characteristic curve; FPR, false-positive rate; 

PI, pulsatility index.
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complex disorders. In our study, the majority of discriminating 
metabolites were decreased in cases that subsequently developed 
early-PE. The biological role of the top three metabolites (glycerol, 
choline, and acetate) was reviewed in the Human Metabolome 
Database [10], and potential explanations for alternations of their 
concentrations are advanced. The decreased levels glycerol in PE 
patients appear to be a consequence of the increased conversion 
of glycerol to triglycerides into the blood stream. Significant 
dyslipidemia, particularly hyper-triglyceridemia has been previ-
ously described as a feature of PE [28]. In addition to glycerol, 
another significantly altered metabolite was choline. A number 
of the control patients in our study had exceptionally high levels 
(40× normal) of choline, whereas most of the early-PE patients 
had normal or below normal levels (<20 µM) of choline. This 
suggests that these high choline controls could possibly be due 
to the use of choline supplements (400–500 mg/day). Although 
a dietary history was not obtained from these study participants, 
choline supplementation has previously been recommended for 
pregnant women, as low choline levels are known to be associ-
ated with elevated homocysteine levels [29], which increases 
the risk for PE, premature birth, and very low birth weight. Our 
results seem to suggest that choline supplementation may indeed 
protect women against early-PE as none of the individuals with 
these unusually high choline levels developed PE. Acetate when 
bound to coenzyme q plays a central role in the metabolism of 
carbohydrates and fats and point further to the potential role 
of dysfunction of lipid and carbohydrate (insulin resistance) 
metabolism in PE.

A second objective of our study was to identify potential 
biomarkers for the early prediction of subsequent PE. We evalu-
ated metabolites by themselves and in various combinations with 
maternal characteristics and uterine artery PI. Metabolomic 
markers strongly predicted the future development of early-PE 
even without the usual pregnancy and demographic information 
such as gestational length, maternal weight, and race. The current 
sample size is limited, and thus future studies using larger number 
of cases will need to be performed to determine the variability 
introduced by standard demographic factors.

Due to its unfamiliarity to many readers a more detailed expla-
nation of evolutionary computation is warranted. Evolutionary 
computation has been around since the 1950s. These computa-
tional methods are tools for predicting outcomes from a complex 
mass of data. Evolutionary computation included a number of 
approaches such as genetic algorithms. The latter is most widely 
utilized for problem solving based on the use of the three prin-
ciples of natural evolution: selection, mutation, and recombina-
tion [30,31]. Applications extend from chemistry, economics, 
engineering, pharmaceuticals to metabolomics. Goodcare [32] 
outlined the acute challenge of analyzing the vast volume of data 
generated from new analytic platforms such as metabolomics. He 
used as an example the analysis of 250 metabolites, a plausible 
number in metabolomics, to discriminate plants resistant to 
drought from normal control plants. A complete search to deter-
mine whether or not a particular metabolite would be included 
in the model would require 2250 or 1.8 × 1075 computations. An 
ultrafast computer would require more than an estimated 3 × 1062 
years to perform the required computations [32]. Evolutionary 
computation is an automated method for providing a good solu-
tion or predicting the outcome of interest from a large mass of 
data in a much shorter time.

Evolutionary computation selects “chromosomes” (which 
is a “string” or a combination of different metabolites and their 
concentrations) that are optimally suited to “survive” meaning 
predict the outcome of interest. Each predictor variable (e.g. 
metabolite) represents a “gene” on this “chromosome” string. 
The “fitness” to survive of each chromosome is a numerical value 
from 0 to 1, assigned by the computer program. Fitness indicates 
how well these combination of parameters ensures “evolutionary 
survival”, or otherwise stated provides the best answer to the 
problem [32].

The combination of the “chromosome” and the “fitness” 
represents an “individual” [33]. A population of such “indi-
viduals” represents the “first generation” of the organisms. The 
“individuals” are ranked according to their fitness. This begins 
the evolutionary process. The selection operator creates the next 
generation by choosing the fittest individuals from the first gener-
ation which have the best chance of “survival,” that is, predicting 
the outcome of interest. In addition new “individuals” for the 
second generation are created by crossover with random rear-
rangement of segments of the “chromosome,” that is, a change in 
a “chromosome” segment with its string of constituent predictors 
(metabolites) which form the sequence of “genes.” Finally, “muta-
tion” is produced where changes in an individual is introduced. 
The mutation could mean either changes in constituent predic-
tors or input variables (metabolites) with or without any change 
in their numerical values (concentrations). The evolutionary 
parallel between genes and an input variable, in this case metabo-
lites should be recognized by the reader.

Thus, genetic algorithms take high performing “individuals” 
and select “mutates” and “recombine” them with other high fitness 
or high performing “individuals” to eventually achieve the optimal 
combination of “genes” or input predictors on the “chromosome” 
that will predict the outcome of interest. The similarities to the 
well-recognized principles of evolution are obvious. Evolutionary 
computing including genetic algorithms produces progressively 
better solutions to the problem through continuous reevaluation 
and adjustment [30]. The process identifies key components and 
patterns form a large data set to achieve the highest predictive 
accuracy. The process is rapid, automated, and does not required 
any statistical or other assumption about the input variables or 
outcomes of interest. It is unaffected by missing data, impervious 

Figure 5.  Receiver-operator characteristic (ROC) curve for prediction of 
early-onset preeclampsia: Metabolite Plus Uterine Artery Doppler Algorithm. 
Area under ROC curve = 0.975 (p < 0.001).

J 
M

at
er

n 
Fe

ta
l N

eo
na

ta
l M

ed
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 C
ol

le
ge

 L
on

do
n 

on
 0

1/
10

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



1846    R. O. Bahado-Singh et al.

		  The Journal of Maternal-Fetal and Neonatal Medicine 

to background noise, and does not require parametric distribution. 
Overall, it is said to be superior to regression analyses and neural 
networks and equally handles both small and extremely large  
data sets.

Uterine artery Doppler has emerged as the single most accu-
rate predictor of PE [16,34–36]. By combining uterine artery PI 
with metabolite concentrations highly accurate algorithms were 
developed for the prediction of early-PE. Both conventional 
statistical analysis and genomic computing methods confirmed 
the accuracy of uterine artery PI and metabolomics-based 
methods for the prediction of early-PE. A recent study on the use 
of metabolomics-based markers found high predictive accuracy 
for the later development of PE [33]. The 45 significantly discrim-
inating metabolites reported in that study were largely different 
from those found in the current study. There are several potential 
explanations for the differences in the metabolite lists for the two 
studies. First, different metabolomic platforms were used. We 
used an absolutely quantitative NMR-based platform, whereas 
the study of Kenny et al. [37] used a semiquantitative liquid chro-
matography–mass spectrometry (LC–MS)-based platform. Sharp 
differences in the types of metabolites identified (polar for NMR, 
nonpolar for LC–MS) and sensitivity (micromolar for NMR, 
nanomolar for LC–MS) are known to exist between different 
analytical platforms [18,20]. Second, the metabolites identified by 
the LC–MS study of Kenny et al. [37]. were obtained via mass-
matching only, whereas the metabolites identified/quantified 
by our NMR study were identified by authentic standards and 
comprehensive spectral matching. Third, we focused on early-PE, 
rather than PE overall as in the prior publication [37] because 
there are considerable differences both in the pathophysiology 
and consequences between early and late disease. Finally, there 
were differences in the racial origin of patients (about half were 
Black in our study, whereas all White in the study of Kinney  
et al. [37]) and in the gestational age at sampling (12 weeks in our 
study, whereas 15 weeks in the study of Kinney et al. [37]).

A recent publication of Odibo et al. [38] used LC–MS metabo-
lomic methods of first-trimester specimens to identify individuals 
at risk for PE and found three amino acids, phenylalanine, gluta-
mate, and alanine to be significantly elevated in women who 
subsequently developed PE. Interestingly, in our study, we found 
no significant difference in amino acid levels within our cohort. 
We are uncertain as to why these discrepancies exist, although the 
Odibo study did not measure choline, glycerol, acetate, or other 
metabolites that we reported. This may partly be explained by 
the use of different metabolomic platforms and the fact that the 
latter study grouped early-and late-onset PE cases in some of its 
analyses.

In conclusion, this study has identified novel first-trimester 
biomarkers that are associated with early-PE. Predictive models 
consisting of metabolites alone or in combination with uterine 
artery PI and maternal characteristics can potentially provide an 
effective early screening for the disease.
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