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 INTRODUCTION 
 Intrahepatic cholestasis of pregnancy (ICP), also known as 

obstetric cholestasis, occurs in  ~ 1 in 150 UK pregnancies. Mater-

nal symptoms of the disease include pruritus, raised serum bile 

acids, and deranged liver function tests ( 1 – 4 ). Liver transami-

nases can be increased as much as 100-fold, but the bilirubin 
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  OBJECTIVES:    Intrahepatic cholestasis of pregnancy (ICP) has a complex etiology with a signifi cant genetic 
component. Heterozygous mutations of canalicular transporters occur in a subset of ICP cases and 
a population susceptibility allele (p.444A) has been identifi ed in  ABCB11 . We sought to expand our 
knowledge of the detailed genetic contribution to ICP by investigation of common variation around 
candidate loci with biological plausibility for a role in ICP ( ABCB4 ,  ABCB11 ,  ABCC2 ,  ATP8B1 , 
 NR1H4 , and  FGF19) . 

  METHODS:    ICP patients ( n     =    563) of white western European origin and controls ( n     =    642) were analyzed in a case –
 control design. Single-nucleotide polymorphism (SNP) markers ( n     =    83) were selected from the HapMap 
data set (Tagger, Haploview 4.1 (build 22)). Genotyping was performed by allelic discrimination assay on 
a robotic platform. Following quality control, SNP data were analyzed by Armitage ’ s trend test. 

  RESULTS:    Cochran – Armitage trend testing identifi ed six SNPs in  ABCB11  together with six SNPs in  ABCB4  
that showed signifi cant evidence of association. The minimum Bonferroni corrected  P  value for 
trend testing  ABCB11  was 5.81 × 10     −    4  (rs3815676) and for  ABCB4  it was 4.6 × 10     −    7 (rs2109505). 
Conditional analysis of the two clusters of association signals suggested a single signal in  ABCB4  
but evidence for two independent signals in  ABCB11 . To confi rm these fi ndings, a second study was 
performed in a further 227 cases, which confi rmed and strengthened the original fi ndings. 

  CONCLUSIONS:    Our analysis of a large cohort of ICP cases has identifi ed a key role for common variation around 
the  ABCB4  and  ABCB11  loci, identifi ed the core associations, and expanded our knowledge of ICP 
susceptibility.   
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level is usually normal or mildly raised. Fetal consequences of 

ICP include spontaneous and iatrogenic preterm labor, meco-

nium-stained amniotic fl uid, fetal distress, and intrauterine death 

( 5 – 8 ). Approximately 80 %  of patients present aft er 30 weeks of 

gestation and diagnosis is routinely confi rmed by elevated serum 

bile acid concentrations and liver function tests ( 9 ). Higher levels 

of fasting and nonfasting serum bile acids (    >    40    μ  M ) have been 

associated with increased risk of adverse pregnancy outcomes 

including spontaneous preterm labor, meconium passage, still-

birth, and prolonged admission to the neonatal unit ( 8,10 ). Severe 

ICP, defi ned by maternal serum bile acid levels of  ≥ 40    μ  M , aff ects 

1 in 1,000 pregnancies in the United Kingdom ( 10 ). Treatment 

is usually with ursodeoxycholic acid, to which  ~ 70 %  of patients 

respond with improvement in maternal liver function tests, bile 

acids, and pruritus ( 11,12 ). It is currently not known whether 

ursodeoxycholic acid treatment reduces the risk of adverse preg-

nancy outcome, although the results of two recent studies were 

encouraging ( 12,13 ). Th e impact of ICP for the off spring was fur-

ther highlighted by a recent study that reported increased rates of 

obesity and dyslipidemia in the 16-year-old off spring of aff ected 

women ( 14 ). 

 ICP has a complex, multifactorial etiology with hormonal, envi-

ronmental, and genetic infl uences. Considerable evidence for a 

genetic predisposition to this disease comes from signifi cant famil-

ial clustering ( 15,16 ), population-specifi c risk diff erences ( 17 ), and 

increased risk with an aff ected fi rst-degree relative ( 18 ). Genes 

mutated in progressive familial intrahepatic cholestasis (PFIC) 

and the related condition benign recurrent intrahepatic cholestasis 

(BRIC), namely  ABCB4 ,  ABCB11 , and  ATP8B1 , have been impli-

cated in the pathogenesis of ICP in a number of diff erent studies. 

Initial studies identifi ed heterozygous mutations of the phosphati-

dyl choline fl oppase  ABCB4  (MDR3) in familial ( 19 ) and sporadic 

( 20 ) cases. Homozygous mutations of this gene cause a severe 

childhood-onset liver disease, PFIC3 ( 21 ). Th ese fi rst studies of 

the genetics of ICP susceptibility were confi rmed and expanded 

by a number of subsequent studies ( 22 – 24 ). Mutations in  ABCB4  

cause a number of other biliary disorders, including drug-induced 

cholestasis ( 25 ) and low phospholipid-associated cholelithiasis 

( 26 ). A small single-nucleotide polymorphism (SNP) / haplotype 

study of common variation around this locus in 52  “ severe ”  ICP 

cases with serum bile acid levels of     >    40    μ  M  provided additional 

evidence for a role in ICP susceptibility ( 27 ). Hence,  ABCB4  muta-

tions and variation are linked to a spectrum of cholestatic disease 

of varying severity. 

 ABCB11 (the bile salt export pump), another member of the 

ABC transporter superfamily, is the high-affi  nity liver-specifi c 

transporter responsible for the export of conjugated bile acids into 

the canaliculus ( 28 ). Homozygous loss-of-function mutations of 

this gene cause the cholestatic diseases PFIC2 and BRIC2 ( 29 ). 

Th e role of genetic variation at this locus in ICP susceptibility has 

recently been explored in detail, with several recurrent mutations 

identifi ed, together with the confi rmation of the p.444A variant as 

a population susceptibility allele ( 30 ). Further analysis of an Italian 

cohort has further established  ABCB11  variation as playing a role 

in ICP susceptibility ( 31 ). 

 Acting together with ABCB4, this transporter is responsible for 

bile salt-dependent bile fl ow. Th e phosphatidyl choline fl opped by 

ABCB4 complexes with bile salts exported by ABCB11 and cho-

lesterol transported by ABCG5 / G8 to form mixed micelles in the 

canalicular tree and protect the ductal epithelium from the deter-

gent action of the bile salts  . 

 Th e involvement of another familial cholestasis gene,  ATP8B1  

(mutated in PFIC1 / BRIC1), has not been established defi nitively. 

Th is protein is proposed to function as a phosphatidyl serine 

fl ippase in the canalicular membrane and has been studied to a 

limited extent in ICP cohorts ( 32,33 ). Furthermore, recent work 

has identifi ed a functional interdependence with the ABCB4 pro-

tein ( 34 ). 

 Bile salt-independent bile fl ow is primarily the result of another 

transporter,  ABCC2  (MRP2 (multidrug resistance-related protein 

2)), that transports bilirubin and other organic anions (including 

some bile acids) across the canalicular membrane ( 35 ). Involve-

ment of genetic variation around  ABCC2  in ICP has been reported 

in South American populations ( 36 ). 

 Th e activity of the transporters responsible for bile formation 

is regulated by the principal bile acid sensor FXR ( NR1H4 ), and 

functional variation of this receptor has been identifi ed in ICP 

( 37 ). FXR acts as the master regulator of bile acid homeostasis by 

sensing intracellular concentrations of bile acids and regulating 

their metabolism and transport via modulation of promoter activ-

ity in key genes ( 38,39 ). In addition, key feedback signaling from 

the gut is performed by  fi broblast growth factor 19  ( FGF19 ). Th is 

is a peptide hormone released by enterocytes via FXR-mediated 

transcriptional activation. It downregulates hepatocyte CYP7A1 

activity (via FGFR4 /  β -klotho-mediated transduction) and hence 

bile acid synthesis ( 40 ) and is vital in controlling appropriate levels 

of hepatic FXR activity. 

 In addition to  ABCB4  and  ABCB11 , these other loci represent 

biologically plausible candidates for a role in ICP susceptibility. Of 

note, a number of small studies in a variety of populations have 

examined other loci postulated to play a role in ICP susceptibil-

ity (reviewed in Dixon and Williamson ( 17 )) without providing 

defi nitive evidence of involvement. Although several of the genes 

have already been demonstrated to play a role in ICP in Caucasians 

( ABCB4 ,  ABCB11 , and  NR1H4 ), there is still a paucity of infor-

mation concerning the contribution of other key genes ( ABCC2 , 

 ATP8B1 , and  FGF19 ) in the etiology of ICP. 

 In order to clarify and expand the genetic factors known to play a 

role in ICP, we sought to investigate the common variation around 

the six candidate loci described above in a large ICP cohort and 

further investigate these fi ndings in a second cohort.   

 METHODS  
 Patients (initial cohort  ) 
 A cohort   of 563 ICP patients of white western European origin 

together with 642 controls of the same origin from the Rotunda 

Th rombophilia study ( 41 ) were analyzed in a case – control design. 

Th is cohort is an extension of our previously described cases (27) 

and includes all previously studied women. For this study, fasting 
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and nonfasting maternal serum bile acid levels were used to make 

the diagnosis of ICP as it was not possible to obtain fasting sam-

ples from all women attending antenatal clinics. 

 Th is study conformed to the guidelines outlined by the 1975 

Declaration of Helsinki and permission was obtained from the 

Ethics Committees of the Hammersmith Hospitals NHS Trust, 

London (REC 97 / 5197), the Ethics Committee of the Faculty 

of Medicine at the University of G ö teborg, University Hospital 

Aachen, University Hospital Dusseldorf, and the Ethics committee 

of the Rotunda Hospital, Dublin. 

 All ICP patients were diagnosed on the basis of clinical symp-

toms in combination with routine laboratory investigations, as 

described previously ( 27,33 ). ICP was diagnosed in pregnant 

women with pruritus without evidence of rash apart from derma-

titis artefacta, and confi rmation of the diagnosis was made with 

raised serum liver transaminases and / or bile acids. Women were 

excluded if another hepatic disorder was diagnosed following 

identifi cation of abnormal hepatitis serology (hepatitis A, B, or C), 

or extrahepatic biliary obstruction following ultrasound examina-

tion. Genomic DNA was extracted from buff y coats prepared from 

EDTA blood samples using standard methods, principally with the 

Qiagen blood mini kit (Qiagen, Crawley, UK). DNA purity and 

concentration were determined with an ND-1000 Nanodrop spec-

trophotometer (Th ermofi sher Scientifi c, Loughborough, UK)  . 

 Polymorphisms around the six candidate loci ( ABCB4 ,  ABCB11 , 

 NR1H4 ,  ABCC2 ,  ATP8B1 , and  FGF19)  drawn from the HapMap 

database (version 2, release 22) were analyzed with Haploview 

(v4.1, Broad Institute, Boston, MA). Markers were selected from 

the genomic region of each locus including 5   kb up- and down-

stream of the coding region. Following fi ltering of the marker set 

to exclude rare alleles (minor allele frequency     <    0.05) the tagger 

algorithm was used to select markers from the HapMap database. 

Th is identifi ed a set of SNPs that effi  ciently captured genetic varia-

tion at each locus so that all untyped variants had high correlation 

( R  2      >    0.8) with one member of the typed set  . In cases where mark-

ers had been previously reported to be associated with ICP, these 

markers were force-included in the selection algorithm. 

 In total, 83 markers were identifi ed encompassing the six loci as 

follows: 23 around  ABCB11 , 14 around  ABCB4 , 11 around  ABCC2 , 

22 around  ATP8B1 , 6 around  NR1H4 , and 5 around  FGF19  

( Supplementary Table S1  online). 

 Primers were designed for each selected SNP using  “ Primer 

Picker ”  (KBioscience, Hoddesdon, UK). Genotyping was under-

taken using a competitive allele-specifi c PCR SNP genotyping sys-

tem utilizing FRET quencher cassette oligonucleotides (KASPar, 

KBioscience) with DNA concentrations adjusted as appropriate.   

 Statistical analysis 
 Provided there was no evidence of departure from Hardy – 

Weinberg equilibrium (Pearson ’ s  χ  2  test), SNP data were analyzed 

by Armitage ’ s trend test (PLINK v1.07; see ref. ( 42 )). Subsequently, 

the data were tested for a diff erence in haplotype frequencies 

between cases and controls by  χ  2  tests (R v2.10.1, Haplostats V1.4, 

see ref. ( 43 )) at each locus. All  P  values were subjected to Bonfer-

roni correction for multiple testing by multiplying uncorrected 

 P  values by the number of independent tests performed (78 for 

SNP testing and 6 for haplotype analysis). Following correction, 

 P  values of     <    0.05 were considered signifi cant. 

 Th e association signals were further analyzed using logistic 

regression performed in R. In particular, we tested each SNP con-

ditional on each other SNP using likelihood ratio tests to deter-

mine whether multiple signals were present at each associated loci. 

Heat maps, in which color indicates the strength of evidence for 

association, were used to visualize these results.   

 Second cohort analysis 
 Th e SNPs identifi ed by this analysis, namely rs2109505 in  ABCB4  

together with rs7757650 and rs3815676 in  ABCB11 , were then 

tested in a second cohort. Th us, 227 further ICP cases, identifi ed 

as part of on-going recruitment, were collected in the same way 

as the fi rst cohort (see above), together with cases from Kings 

College Hospital (ethics REC 02 / 03 / 033), and DNA extracted and 

SNP genotyping performed as described above. None of these 

cases have been reported in our previous genotyping studies. 

 Association was tested using this cohort alone, and then in 

a combined analysis of the three SNPs in each cohort, with the 

statistical tests described above.    

 RESULTS 
 In total, 78 markers passed quality control and Hardy – Weinberg 

testing and were used in association analysis of the two cohorts. 

Association analysis with the Armitage trend test identifi ed six 

SNPs in  ABCB11  together with six SNPs in  ABCB4  showing signif-

icant evidence for association ( Table 1 ). Th e strongest association 

signals were seen with rs2109505 in  ABCB4  and with rs7577650 

in  ABCB11 . No SNPs from the other four loci showed evidence of 

association ( Supplementary Table S1 ). 

 Th e data set was investigated further by haplotype analysis across 

each of the six loci, which identifi ed signifi cant diff erences in fre-

quencies between cases and controls for  ABCB11  and  ABCB4.  No 

other signifi cant diff erences in haplotype frequencies across the 

other loci ( ABCC2 ,  ATP8B1 ,  NR1H4 , and  FGF19 ) were identifi ed 

( Supplementary Table S2 ).  

  ABCB11  
 HapMap analysis identifi ed 23 tagging polymorphisms that passed 

quality control. Association analysis of these markers subsequent 

to genotyping identifi ed six markers signifi cantly associated with 

altered risk for ICP: rs228762, rs2058996, rs7605199, rs3815676, 

rs3814382, and rs7577650 ( Table 1 ). Th e most strongly associated 

marker was rs7577650 (trend test corrected  P     =    1.8 × 10     −    4 ).   

  ABCB4  
 HapMap analysis identifi ed 14 polymorphisms that passed qual-

ity control. Association analysis of these markers subsequent to 

genotyping identifi ed six markers signifi cantly associated with 

altered risk for ICP: rs2097937, rs31676, rs1149222, rs4148826, 

rs2109505, and rs2302386 ( Table 1 ). Th e most strongly associated 

marker was rs2109505 ( P     =    4.6 × 10     −    7 ).   
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  ABCC2 ,  ATP8B1 ,  NR1H4 , and  FGF19  
 Around these loci, HapMap analysis identifi ed 41 polymorphisms 

but none showed signifi cant evidence for association in our cohort 

( Supplementary Table S1 ). Th e previously reported  ABCC2  asso-

ciation ( 36 ) was not detected in this cohort.   

 Haplotype analysis 
 Th e data set was investigated further by haplotype analysis across 

all six loci ( Supplementary Tables S2 and S3a and b ). Signifi cant 

diff erences were identifi ed in haplotype distributions between 

cases and controls for  ABCB11  (global corrected  P  value 0.02) and 

 ABCB4  (global corrected  P  value 5.76 × 10     −    5 ).   

 Conditional analysis of association and second cohort analysis 
 Heat maps were generated using conditional analysis with logis-

tic regression to visualize the patterns of evidence for associa-

tion across the locus. Th is analysis showed that the association 

signal in  ABCB4  was explained by the SNP rs2109505, with no 

evidence for further signals (( P     >    0.05;  Figure 1 ). Th is is shown 

in the diagram by the red horizontal signal for this SNP (i.e., sig-

nifi cant evidence for association regardless of which other SNPs 

are corrected for) and the white column ( “ corrected for ” ) for this 

SNP, indicating no other signifi cant signal when the eff ect of this 

SNP is corrected for. In contrast, analysis of the associated SNPs 

in  ABCB11  identifi ed evidence for two independent signals, 

at the SNPs rs3815676 and 7577650: each remains signifi cant 

( P     <    10     −    4 ) correcting for the other, or any other SNP at this locus 

( Figure 2 ). In the heat map, the strong red color again indicates 

evidence for association, but in this case the  “ corrected for ”  

column shows evidence of the second signal, indicated by the 

darker red block. Th e key SNPs identifi ed by this analysis were 

genotyped in the second cohort. Using the controls from the fi rst 

cohort for comparison, the association with each SNP was con-

fi rmed and when analyzed together the combined cohort indi-

cated strong evidence for association ( Table 2 ). Th e odds ratios 

calculated for the trend tests are allelic and, as ICP is rare, are 

approximately equivalent to the corresponding relative risk. Th us, 

for the association with rs3825676 (a rare SNP compared with 

the majority studied), the odds ratio indicate a risk of ICP that 

is 3.79 times higher in the homozygote than the heterozygote 

(with a corresponding reduction in risk in the other homozygote 

genotype.). For the other SNPs analyzed using this test, the same 

principle applies. Hence, for the much commoner SNP rs7577650, 

the homozygotes have a 1.4 times change in risk for ICP, and for 

rs2109505 in  ABCB4  (again a much commoner SNP), the odds 

ratio shows a change in risk of 2.06-fold.    

 DISCUSSION 
 We present here the results of the analysis of six candidate loci 

for susceptibility to ICP. We have extended and expanded prior 

studies on these biologically plausible candidates and confi rmed 

key roles for variation around two of the loci studied by identi-

fying groups of strongly associated polymorphisms. We have 

demonstrated signifi cant association of SNPs and haplotypes of 

the key transporters responsible for bile formation, the bile salt 

export pump  ABCB11 , and the phosphatidyl choline fl oppase 

 ABCB4 , with ICP. Aft er determining the key association signals 

    Table 1 .    Single-nucleotide polymorphisms of  ABCB11  and  ABCB4  showing signifi cant evidence of association with ICP (trend test)   

    dbSNP     Location (bp)    MAF (ICP)    MAF (C)    OR (95 %  CI)     P  value     P  (corr)  

    ABCB11  

      rs2287622  169,538,574  0.33  0.40  1.39 (1.17 – 1.64)  0.000159  0.012363 

      rs2058996  169,542,195  0.38  0.46  1.39 (1.18 – 1.65)  0.000145  0.011287 

      rs7605199  169,564,700  0.47  0.45  1.36 (1.16 – 1.6)  0.000374  0.029172 

      rs3815676  169,578,625  0.015  0.052  3.32 (1.93 – 5.71)  7.45 × 10     −    6   0.000581 

      rs3814382  169,597,234  0.45  0.38  1.35 (1.15 – 1.60)  0.000511  0.039874 

      rs7577650  169,599,456  0.31  0.40  1.52 (1.28 – 1.80)  2.4 × 10     −    6   0.00018 

    ABCB4  

      rs2097937  86,868,839  0.16  0.22  1.50 (1.22 – 1.86)  0.00018  0.014017 

      rs31676  86,907,816  0.16  0.24  1.45 (1.15 – 1.83)  1.72 × 10     −    6   0.000134 

      rs1149222  86,911,711  0.14  0.27  1.63 (1.31 – 2.02)  8.66 × 10     −    6   0.000676 

      rs4148826  86,912,355  0.11  0.20  1.95 (1.54 – 2.45)  1.56 × 10     −    8   1.22 × 10     −    6  

      rs2109505  86,917,342  0.11  0.20  1.98 (1.57 – 2.49)  5.9 × 10     −    9   4.6 × 10     −    7  

      rs2302386  86,929,880  0.078  0.14  1.98 (1.51 – 2.60)  2.95 × 10     −    7   2.3 × 10     −    5  

     bp, base pairs; C, control; CI, confi dence interval; dbSNP, single-nucleotide polymorphism database; ICP, intrahepatic cholestasis of pregnancy; MAF, minor allele fre-
quency; OR, odds ratio;  P  (corr),  P  value corrected for multiple testing  .   
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variant rs2109505 (c.711 A    >    T, p.I237I) was the most signi fi cant, 

identifi ed as the key signal by conditional analysis and con-

fi rmed in the second cohort. Th is association has been previously 

reported in smaller population-based studies in ICP ( 22,27 ).  In 

silico  analysis of splicing using predictive tools together with 

mini-gene construct mRNA analysis in COS-1 cells failed to 

identify an eff ect of this variant on ABCB4 splicing (data not 

shown). 

with conditional analysis, these fi ndings were confi rmed in a sec-

ond cohort. 

 Heterozygous mutant alleles of  ABCB4  have been described 

in a spectrum of cholestatic disease, including ICP ( 17 ). Our 

analysis has demonstrated strong association at this locus, 

confi rming that common polymorphisms together with rare 

mutations ( 16,17,19,20 ) in this region are implicated in ICP. 

Of the six polymorphisms showing association, the synonymous 
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   Figure 1 .         Heat map showing conditional analysis of association signals at the  ABCB4  locus. Each row plots the  P  value for the row single-nucleotide poly-
morphism (SNP), corrected for the column SNP, with color intensity indicating the size of the  P  value by order of magnitude units, hence 5 indicates a 
 P  value of     <    10     −    5 . Thus, the map explores the independent effect of each SNP by removing the effects of each of the others in turn to determine if a single 
or multiple association signals are present.  
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 Th e contribution of synonymous mutations to disease suscepti-

bility via a number of diff erent mechanisms is being increasingly 

realized ( 44 ); however, the possibility remains that this association 

is because of linkage disequilibrium between rs2109505 and an 

unknown causative variant. 

 Th e association seen at the  ABCB11  locus (the bile salt export 

pump) expands the role of this gene in ICP. We and others previ-

ously identifi ed rare heterozygous mutant alleles in ICP, together 

with an association with rs2287622 (the p.444A polymorphism) 

( 30,45,46 ). In this study we have extended the analysis across 

the gene, and unraveled the genetic architecture underlying sus-

ceptibility at this locus. Importantly the association signal in the 

cases, confi rmed in the expanded cohort with the second group of 

patients, is composed of two signals, the major one from rs7577650 

but with rs3815676 contributing independently to risk, although 

at a relatively low frequency. Th e p.444A variant remains associ-

ated with disease but our comprehensive analysis suggests that a 

diff erent marker drives this association, namely rs7577650. Th ese 
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  Figure 2 .         Heat map showing conditional analysis of association signals at  ABCB11  locus using the same technique as  Figure 1  to identify whether multiple 
associations are present.  
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 FGF19 secretion and signaling represents a key part of the enter-

ohepatic circulation by regulating CYP7A1 expression ( 40 ), and 

hence this was a plausible candidate locus for ICP. However, com-

mon variation around this locus does not seem to play a major role 

in disease susceptibility in our cohort. 

 It is important to recognize however that weaker associations at 

these other candidate loci may be identifi ed by future studies with 

much larger cohorts. 

 In addition to the genetic susceptibility to ICP, evidence is accu-

mulating for the involvement of other factors in this complex 

condition. During the third trimester when the disease usually 

presents, circulating levels of reproductive hormones are at their 

highest and recent work has identifi ed progesterone metabolites as 

capable of reducing bile acid uptake in hepatocytes, thereby having 

a potential role in ICP  49 – 51) . Estrogen metabolites have also been 

implicated ( 52 ). Environmental factors have also been identifi ed 

that may play a role, including seasonal variation and selenium lev-

els ( 53 ). A proposed disease mechanism is that altered concentra-

tions of specifi c hormone metabolites can unmask the disease in 

genetically susceptible individuals. 

 Th e identifi cation of a role for common variation in  ABCB4  and 

 ABCB11  in the etiology of ICP is of relevance in a clinical context. 

Th e condition has a spectrum of severity. At present, the princi-

pal way the severity of maternal disease is classifi ed is in terms of 

the maternal serum bile acid level. ICP typically presents in the 

third trimester of pregnancy and resolves aft er delivery of the baby. 

Approximately 20 %  of cases have early-onset disease ( 10 ) and a 

similar proportion of cases have associated biliary diseases when 

they are not pregnant, ( 54 ) e.g., cholelithiasis. Although there are 

studies that demonstrate an association between the level of serum 

bile acids and rates of adverse pregnancy outcome  (8,10),  the rela-

tionships are not straightforward. It will be of value to clinicians 

managing this condition for future studies to establish whether 

specifi c genotypes in the mother are associated with an increased 

risk of specifi c clinical features of ICP, including severity of dis-

ease and associated maternal and off spring diseases. Furthermore, 

patients with  ABCB4  mutations respond to ursodeoxycholic acid, 

and hence it is feasible that the SNPs reported in this study will be 

associated with treatment response. Th is study was not designed 

to evaluate treatment response, and hence it was not possible to 

establish whether this is the case. At present, it is also not known 

fi ndings have important implications as studies in other popula-

tions have postulated roles for the 444A polymorphism in drug-

induced cholestasis ( 46 ) and in hepatitis C-related cirrhosis ( 47 ). 

Given that the SNP rs7577650 is intronic, and that the regression 

analysis shows it to be driving the association seen with 444A, it 

is possible that the underlying functional variation has yet to be 

identifi ed. Deep resequencing of this region using next-genera-

tion platforms will be necessary to identify the catalog of varia-

tion around the identifi ed associations and identify the underlying 

causative risk alleles, for both the rs7577650 / 444A signal and the 

new independent signal we have identifi ed, rs3815676. 

 Genetic variation around the multidrug resistance-related pro-

tein  ABCC2  represents an attractive candidate for ICP susceptibil-

ity because of the localization and function of the protein ( 35 ). A 

previous study of a South American population proposed an asso-

ciation with ICP ( 36 ), but this was not replicated in a European 

Caucasian population ( 46 ). By saturating the genomic region of 

 ABCC2  with tagging SNPs in our larger cohort ( n     =    563 vs. 70 in 

the initial report) we have shown that common variation of this 

transporter does not play a major role in ICP susceptibility in our 

Caucasian cohort (including the SNP identifi ed in the initial report 

(rs3740066)). 

 Th e causative gene for PFIC1 / BRIC1 was also included in our 

analysis. Previous small studies have reported heterozygous SNPs 

of  ATP8B1  in ICP cases ( 32,33 ) but have not demonstrated con-

clusive functional eff ects of these variants in  in vitro  studies ( 48 ). 

Our analysis has excluded common variation around this locus as 

having a large role in the disease. 

 We previously identifi ed genetic variation at the  NR1H4  (far-

nesoid-X receptor) locus in our ICP cohort ( 37 ) and demonstrated 

functional eff ects for some of these variants. However, the popula-

tion frequencies were very low in both cases and controls. In the 

expanded cohort used in this study, the frequency of these variants 

has not changed signifi cantly in cases or controls. Th us, common 

genetic variation around FXR is unlikely to play a major role in the 

etiology of ICP. A weakness of this study is that the cohort is not 

suffi  ciently large to identify rare variants that confer susceptibility 

to ICP, despite being the largest available cohort to our knowledge. 

Th is is exemplifi ed by the NR1H4 results that confi rmed the pres-

ence of rare functional variants but did not establish these variants 

as common susceptibility alleles for ICP. 

  Table 2 .    Second cohort analysis and combined analysis of ICP associations (trend test  P  values)   

    dbSNP identifi er    Original cohort    Second cohort    Combined cohort ( n =790)    Combined MAF (ICP)    MAF (C)    OR (95 %  CI)  

    ABCB11  

      rs3815676  5.8 × 10     −    4   4.6 × 10     −    4   4.6 × 10     −    8   0.013  0.049  3.79 (2.30 – 6.26) 

      rs7577650  1.8 × 10     −    4   1.9 × 10     −    2   2.9 × 10     −    6   0.32  0.40  1.46 (1.25 – 1.70) 

    ABCB4  

      rs2109505  4.6 × 10     −    7   3.3 × 10     −    6   1.6 × 10     −    11   0.11  0.20  2.06 (1.67 – 2.54) 

     C, control; CI, confi dence interval; dbSNP, single-nucleotide polymorphism database; ICP, intrahepatic cholestasis of pregnancy; MAF, minor allele frequency; OR, odds 
ratio.   
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whether mutation screening is justifi ed in ICP. However, with the 

emerging use of next-generation sequencing technology in the 

clinic, it will be valuable for future studies to evaluate whether 

women with early-onset severe disease, particularly if they have a 

family history of ICP or related biliary disease, have mutations in 

 ABCB4  or  ABCB11 . 

 We have identifi ed population risk alleles for ICP in the two 

genes primarily responsible for bile formation; the phosphatidyl 

choline fl oppase  ABCB4  (MDR3) and the bile salt export pump 

 ABCB11 . Th e identifi cation of the functional variants that underlie 

these association signals will lead to a greater understanding of the 

mechanisms responsible for susceptibility to this cholestatic dis-

ease of pregnancy.       
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 Study Highlights 

  WHAT IS CURRENT KNOWLEDGE  
  3 Intrahepatic cholestasis of pregnancy (ICP) is a complex 

disease with a signifi cant genetic component. 

  3 Rare mutations of hepatobiliary transporters have been 
identifi ed. 

  3 Less is known about common variants and disease risk, 
although the  ABCB11  444A allele has been implicated. 

  WHAT IS NEW HERE  
  3 Three common variants in  ABCB11  and  ABCB4  have a 

signifi cant impact on ICP susceptibility. 

  3 In contrast to earlier studies, the lead association signal at 
 ABCB11  is rs7757650. 

  3 An independent association has been identifi ed at this 
locus, contributing separately to risk.          
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