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ABSTRACT 

 
Objective: To estimate the risk for fetal trisomy 21 (T21) and other chromosomal 
abnormalities at 11-13 week’s gestation using computational intelligence classification 
methods. 
 
Methods: As a first step, we train the artificial neural networks with 72054 euploid 
pregnancies, 295 cases of T21 and 305 of other chromosomal abnormalities (OCA). 
Then, we sort the cases into two categories of “no-risk” and “risk”. The cases of “no-
risk” are no further examined, while the cases with “risk” are forwarded in Stage 2 for 
further examination where we classify them in three types of risk, namely “no-risk”, 
“moderate-risk” and “high-risk”. 
 
Results: Of a total of 36328 unknown to the system pregnancies, in the first Stage, 
17512 euploid, 2 T21 and 18 other chromosomal abnormalities are classified as “no-
risk”. The remaining 18796 (51.4% FPR) cases are reassigned in Stage 2 where 7895 
euploid, 2 T21 and 2 OCA are classified as “no-risk”, 10464 euploid, 83 T21 and 61 
OCA as “moderate-risk” and 187 euploid, 50 T21 and 52 OCA as “high-risk”. The 
sensitivity and the specificity for T21 in Stage 2 are 97.1% and 99.5% respectively, 
assuming that cell-free DNA test can identify all the euploid and aneuploid cases. 
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Conclusion: We propose a method for the early diagnosis of chromosomal 
abnormalities, which ensures that most of the T21 are classified as “high-risk” at any 
Stage. At the same time, we minimize the euploid cases that have to undergo invasive 
or cell-free DNA examinations through a routine procedure offered in two Stages. Our 
method is minimally invasive and of relatively low cost, highly effective on T21 
identification and it performs better than other existing statistical methods. 
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Introduction 

 
First-trimester screening for trisomy (T21) by a combination of maternal age, fetal 
nuchal translucency (NT) and serum free β-human chorionic gonadotropin (β-hCG) and 
pregnancy associated plasma protein-A (PAPP-A) can detect about 90% of affected 
pregnancies at a false positive rate (FPR) of 5%1,2. The performance of the first-
trimester combined test can improve with increase in detection rate (DR) to >95% and 
decrease in FPR to <3% with the addition of the ultrasonographic markers of absent 
nasal bone, and abnormal flow in the ductus venosus and across the tricuspid valve.1,3-

5   
A recent major improvement in performance of screening for T21 has been achieved 
with analysis of cell-free DNA (cfDNA) in maternal blood with DR of >99% and FPR of 
<0.1%.6 However, universal screening by cfDNA testing as an alternative to the 
combined test, would be expensive and ignore the other benefits of the combined test, 
including early detection of many major fetal defects, diagnosis of multiple pregnancies 
and their chorionicity, and early prediction of pregnancy complications, such as 
preeclampsia, with the potential of prevention through prophylactic pharmacological 
interventions. The alternative to universal screening by the cfDNA test is a strategy of 
cfDNA testing contingent on the results of first-line screening by the combined test. 
This approach retains the major advantages of cfDNA testing in increasing DR and 
decreasing FPR, but at considerably lower cost than offering cfDNA testing to the 
whole population. 
 
Artificial neural networks (ANNs), which are a specific simplified version of 
computational intelligence, are being increasingly applied in medicine and biological 
research7-10. Essentially, it deals with mathematical algorithms implemented in software 
that learn from historical data and capture the knowledge and the internal dynamics 
that are contained in the data. Suitably trained models of computational intelligence 
approach the functionality of small biological neural clusters in a very fundamental 
manner that mimics human-like behavior. They constitute the digitized model of the 
biological brain and can detect complex non-linear relationships between dependent as 
well as independent variables in a dataset which are undetectable by the human brain. 
Artificial neural networks can learn from their input data, also known as training data. 
Such learning is achieved because ANN models can infer a function from observations 
and can subsequently use this function.  
 
The objective of this study is to examine the potential value of ANN schemes in the 
stratification of risk for fetal T21 and other chromosomal abnormalities (OCA) 
incorporating the use of the combined test, the additional first-trimester 
ultrasonographic markers and cfDNA testing; it is aimed to achieve the highest 
possible DR at the minimum possible number having the cfDNA test and invasive 
testing. 
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Methods 
 
Study population 
 
The study population was derived from women with singleton pregnancies attending 
the Fetal Medicine unit at Kings' College Hospital, London, (March 2006 to May 2015), 
Obstetric ultrasound unit at University College London Hospital, London (April 2009 to 
July 2013) and Fetal Medicine unit at Medway Maritime Hospital, Gillingham (April 
2010 to May 2015) for screening for aneuploidies at 11+0 to 13+6 weeks’ gestation. 
Maternal age and other demographic characteristics were recorded and 
transabdominal ultrasound examination was performed for measurement of fetal 
crown–rump length (CRL) and nuchal translucency (NT) thickness and assessment for 
presence or absence of the fetal nasal bone, reversed a-wave in the ductus venosus 
and tricuspid regurgitation by sonographers who had received the appropriate Fetal 
Medicine Foundation Certificates of Competence.1-4 The pregnancy was dated 
according to the measurement of fetal CRL.11 Maternal blood was collected and 
automated machines that provide reproducible results within 30 min were used to 
measure serum PAPP-A and free β-hCG concentrations (Delfia Express System, 
Perkin Elmer, Waltham, MA, USA). 
 
The best available method for establishing the presence of T21 and OCAs was 
prenatal fetal karyotyping by chorionic villous sampling or amniocentesis, postnatal 
karyotyping from neonatal blood; absence of the target condition was established by 
either prenatal karyotyping or clinical examination of a phenotypically normal neonate.  
 
The artificial neural network diagnostic system 
 
A feed forward network of neurons consisting of a number of layers that are connected 
to each other was build. The first layer is called input layer and it contains as many 
neurons as the input parameters. The last layer is called output layer and it contains 
one neuron. Other added layers, placed between the first and the last, are called 
hidden layers. A typical ANN architecture has one or two hidden layers. In every 
connection, there is a weight and an activation function that represent the process in 
the synapses of cells in a biological brain. The weights are optimized in the training 
procedure by presenting all the examples several times and calculating the error which 
is then used for adjusting the weights through a learning algorithm. The number of 
repetitions is a parameter and is called epochs. The number of layers and neurons, the 
activation functions and the epochs are parameters that are pre-defined, in most cases 
empirically by the system designer. 
 
An unknown case is evaluated by an artificial neural network by presenting the 
parameters to the input layer. This information is passed through the layers by applying 
the appropriate weights and the transfer functions. The output value of the neural 
network in the last layer takes values in the range between 0 and 1 due to the sigmoid 
transfer function. To classify a case into positive or negative we use a cut-off point that 
is applied to the output of the neural network, which was optimized to achieve the 
highest detection of T21 at the lowest FPR. 
 
Data reduction for handling the class imbalanced effect 
 
The vast majority of cases in our dataset are euploid, creating a highly imbalanced 
situation between the two classes, normal and abnormal. This is known as the “class 
imbalanced problem”12. More precisely, from the total number of 72654 cases used in 
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the training set, 72054 are euploid and 600 are aneuploid. In medical data, this is a 
typical finding since abnormalities are less common, thus resulting in an imbalanced 
situation between the normal and abnormal classes13-15. 
 
In machine learning, most of the supervised techniques for classification are not able to 
generalize the data and the performance of the classifiers is low when the training set 
consists of imbalanced data. For instance, the Bayesian classifier uses the population 
of each class to estimate the posterior probabilities. In the case of class imbalanced 
populations, the probability of an unknown case will be biased towards the majority 
class. Similarly, the popular classifier of Support Vector Machines performs poorly with 
imbalanced populations16. ANNs adjust their weights based on a classification error, as 
explained above. Since the error is calculated globally for both normal and abnormal 
cases, a false negative classification has equal impact with a false positive 
classification. In practice however, a false negative classification has higher importance 
due to the small population. In other words in our dataset, a false positive classification 
has a percentage of 1 / 72054 = ~0% while a false negative has a percentage of 1 / 
600 = 0.1%. 
 
In the literature, a lot of work has been done for generating a balanced set from an 
imbalanced dataset for classification purposes17-19. This is typically done either by 
oversampling the minority class20 or downsampling the majority class21. For the 
problem under study, we applied both approaches and we found that downsampling 
the majority class yields better results.  
 
We thus first generated a cluster map of the entire euploid population, using the k-
means22 algorithm with five prototypes, assuming that the normal cases have their own 
sub-clusters. We then computed the prototype vector for each sub-cluster using the k-
means algorithm and selected representative cases around this vector. In this way, we 
ended up with a reduced training set for the euploid class which represents the entire 
euploid population. For a more detailed explanation of this approach, we refer to our 
previous work23. 
 
Cross validation 
 
We followed a standard procedure for testing the performance of our system. Typically 
in machine learning, three different datasets are used for building and verifying a 
system namely the training set, the validation set and the test set. The training set 
consists of known cases that are used for the learning procedure of the ANN and the 
validation set are known cases that are used to assessing the learning performance of 
the system during the training phase. The test set is usually another dataset that the 
labels are only known to the doctor. When the test set is given for testing without 
knowing the state of each case, we call it blind set. 
 
The training and test sets are randomly chosen from a dataset with a percentage of 
70% and 30% for training and validation sets respectively, and the experiments are 
repeated three times with different sets. This procedure is called three-fold cross 
validation. Similarly, the ten-fold cross validation is typically done by using the 90% of 
the dataset for training and 10% for validation. Another popular procedure is the “leave 
one out cross validation” where the training set consists of the total population and only 
one case is used for validation. This procedure is repeated as many times as the size 
of the dataset and the results are often presented with statistical terms such as 
average and standard deviation. This is done for making sure that the results are 
consistent, even though the training sets are different.  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 
The training set used in this study is consisted of euploid, T21, trisomy 18, trisomy 13, 
triploidy, Turner and other chromosomal abnormalities. We applied a three-fold cross 
validation with random selection and in each run we achieved 100% true positive rate 
for T21 at a FPR of less than 5%, for both training and validation sets. After the 
development of the appropriate ANNs, we used another blind set to evaluate the 
performance of our system and produced the results presented in this paper. 
 
 
Stratification of risk 
 
In this study we used a two-Stage approach for stratification of risk and diagnosis of 
fetal T21 and OCA (Figure 1). 
 
In Stage 1, we used four neurons in the input layer, representing the maternal age in 
years, the serum free β-hCG, the PAPP-A and the NT in mm. The output was binary: 
“no-risk” and “risk” for aneuploidy. The “no-risk” group from Stage 1 should not require 
any further testing and the group at “risk” for aneuploidy was subjected to Stage 2 
screening. 
 
In Stage 2, we used seven neurons in the input layer, representing the maternal age, 
the free β-hCG, the PAPP-A, the NT, the nasal bone (present or absent), the ductus 
venosus flow (positive or negative a-wave) and the tricuspid flow (present or absent 
tricuspid regurgitation). The output was “no-risk”, “moderate-risk” and “high-risk” for 
aneuploidy. The “no-risk” group should not require any further testing, the “moderate-
risk” group should only had cfDNA testing and the "high-risk" group would be strongly 
suggested to undergo invasive testing without going through cfDNA test. 
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Results 
 
Study population 
 
The composition of the whole population of the training and validation sets used in the 
study is shown in Table 1. In total there were 108112 euploid and 870 aneuploid 
pregnancies, including 432 cases of T21, 166 of trisomy 18, 56 of trisomy 13, 35 of 
triploidy, 63 of Turner syndrome and 118 of other aneuploidies. The training set 
contained 72054 euploid pregnancies that were reduced to 5002 as explained in the 
Methods Section, 295 cases of T21 and 305 of other aneuploidies and the validation 
set contained 36058 euploid pregnancies, 137 cases of T21 and 133 of other 
aneuploidies. 
 
Stratification of risk 
 
In Stage 1, we used four markers (maternal age, PAPP-A, β-hCG and nuchal 
translucency) as inputs to the ΑΝΝ. From the 36328 pregnancies in the blind set, 
17532 (48.3%) were classified as “no-risk” and 18796 (51.7%) were allocated to the 
risk group that was subsequently assessed in Stage 2 (Figure 2). 
 
In Stage 2, we include three additional markers, the ductus venosus, the tricuspid flow 
and the nasal bone and from the 137 T21 cases, 50 cases were allocated to the “high-
risk” group, 83 to the “moderate-risk” group and 2 to the “no-risk” group. Furthermore, 
187 of the euploid pregnancies were allocated to the “high-risk” group, 10464 to the 
“moderate-risk” group and 7895 to the “no-risk” group (Table 2). The FPR from Stage 1 
to Stage 2 is reduced from 51.7% to ~1%, assuming that cell-free DNA test can identify 
all the euploid and aneuploid cases. 
 
In addition to the diagnosis of T21, our method achieves high accuracy in detecting the 
OCA. The validation set contained 133 pregnancies with aneuploidies other than Τ21; 
18 of these were allocated to the “no-risk” group in Stage 1, 2, 61 and 52 were 
allocated respectively to the “no-risk”, “moderate-risk” and “high-risk” groups in Stage 
2.  
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Discussion 
 
The findings of this study demonstrate the potential value of artificial neural network 
schemes in the prediction of T21 and other aneuploidies from ultrasonographic and 
biochemical markers at 11-13 weeks’ gestation. We used multilayer feed forward 
neural systems because these are considered to be the most suitable from the point of 
view of satisfactory generalization and diagnostic yield24. Essentially, a multilayer 
network of neurons was build and adjusted according to a set of parameters for each 
case of either aneuploidy or euploid fetus in order to maximize the correct identification 
of each group.  
 
Artificial neural networks have the ability to handle non-linear structures by using 
multiple hidden layers. Furthermore, assumptions about statistical concepts such as 
distributions, mean and standard deviation values are not needed. In addition to the 
above advantages, they can learn to recognize patterns in data and they have been 
used widely for medical tasks such as image recognition for several diseases. 
 
In this work we present a two-Stage approach for the estimation of the risk for 
aneuploidy. In both Stages, we make sure, by adjusting the cut-off point accordingly, 
that only a minimum number of T21 cases are classified as euploid (i.e. 97% 
sensitivity). At the same time, we focus our studies to minimize the FPR to the lowest 
possible. We have validated our results using a test set of a total number of 36058 
euploid, 137 T21 and 133 OCA cases. In Stage 2, 10626 pregnancies were allocated 
to the “moderate-risk” group and consequently 29% of the total population of 36328 
pregnancies would require cfDNA testing. However, the percentage of the euploid that 
will be suggested to perform an invasive test is less than 1% of the total population. 
The values here assume that cfDNA detects accurately all euploid and aneuploid 
cases. Although cfDNA testing performance for T21 approaches this assumption, for 
OCAs, this is not accurate. 
 
We report higher classification results than the state-of-the-art statistical mixture model 
that is currently used as a classifier. For making an accurate comparison between our 
method and the standard first trimester serum plus US screening test, we compare the 
95% DR for T21 that is reported in the literature at the 5% FPR. We adjust a cutoff 
point at the value of 0.45, as explained in the section Methods, and achieved 94.2% 
and 79.5% DRs for T21 and the OCA respectively at a FPR of 1.2%. Therefore, for the 
same DR of 95% for T21, we achieve significantly lower FPR. 
 
Our proposed methodology has the potential to be used in a real time application in 
medical centers, since it returns immediate results during a regular visit of the pregnant 
woman, thus reducing time and cost for additional examinations. Moreover, it can have 
a built-in learning mechanism, which will add continually to the knowledge acumen of 
the system while new identified cases are added into the system. Currently this 
updating is done manually at certain intervals. Since the application is installed in a 
normal computer, the doctor could easily use it and the validation of the cases will be 
done with no cost. 

One drawback of our method is that it does not classify correctly, at both stages, the 
euploid cases as no-risk. About 51% of the euploid population after the Stage 1 will be 
requested to access sonographers with training in the assessment of certain markers 
that are not routinely assessed by everyone. The access to such doctors is relatively 
limited for the whole advantaged population. Furthermore, in a percentage of patients, 
some of those markers cannot be successfully obtained even by experienced doctors, 
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due to the fetal position for example. About 30% of the euploid population in Stage 2 is 
classified as “moderate-risk”, thus resulting in many cases requiring further testing 
such as cfDNA testing. This fact makes the proposed method weak in terms of cost 
effectiveness, but it is better than having the entire euploid population undergoing 
cfDNA testing. 
 
Certainly, more work needs to be done for improving further the DR of the OCA. Our 
outcome assessments in Stage 2 are based on prenatal karyotype of fetuses that 
screened positive and postnatal karyotype of fetuses that are not phenotypically 
normal. Several OCAs will not be picked up by that type of assessments. The cfDNA 
testing does not target, and thus detect several OCAs, while some of them even not 
diagnosable by phenotype assessment at birth. Furthermore, none of the low risk and 
moderate risk cases was phenotypically considered as normal at birth. Several of 
which, here considered as euploid, would actually be carriers of OCAs not targeted by 
cfDNA and/or with apparently normal phenotype at birth. In the supplementary 
material, we describe each of the OCAs that were allocated to the “no-risk” group in 
stage 1 and to the "no-risk" and "moderate-risk" in stage 2. The first ones would only 
get a karyotype if they had a phenotype at birth and the second ones would get only 
cfDNA testing, which does not target all OCAs. 
 
In this study we made sure that only 3% of Trisomy 21 cases will be born unexpectedly 
(detection rate was 97%). Still we were able to limit the number of cfDNA tests in 
comparison with a clinical approach offering this test as a first tier to every woman, 
while keeping the number of invasive tests as low as what is obtained with such 
approach. 
 
For future work, we will focus our research to build models that will associate the risk 
for aneuploidy with preeclampsia and other pregnancy complications. We currently 
have preliminary results that we aim to publish in another paper. 
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Figure Legends 
 
Figure 1 Overview of the proposed methodology. Every case is suggested to perform 
the first Stage of the prenatal examination for estimating the risk for fetal aneuploidy. 
The “risk” cases are reassigned in Stage 2 that are finally classified in “no-risk” and 
continue the pregnancy, “moderate-risk” and suggested to perform the cfDNA test or 
“high-risk” and suggested for an invasive test for reaching diagnosis. The abbreviations 
MA, NT, DV, TF, NB stand for maternal age, nuchal translucency, ductus venosus, 
tricuspid flow and nasal bone respectively. 

Negative Positive

Combined screening at 11−13 weeks
(MA, NT, PAPP−A, b−hCG)

Stage 1
4 inputs ANN system

no risk risk

do nothing Stage 2
7 inputs ANN system

Combined screening at 11−13 weeks
(MA, NT, PAPP−A, b−hCG, DV, TF, NB)

no risk moderate risk high risk

cfDNA test

do nothing invasive test
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Euploidy (Eupl.) T21 OCA

36058 137 133

no risk risk

Eupl. T21 OCA

17512 2 18

Eupl. T21 OCA

18546 135 115

no risk moderate risk high risk

Eupl. T21 OCA

7895 2 2

Eupl. T21 OCA

10464 83 61

Eupl. T21 OCA

187 50 52

Stage 1
4 inputs ANN system

do nothing Stage 2
7 inputs ANN system

do nothing cfDNA test invasive test

 
 
Figure 2 The results of the artificial neural network for Stages 1 and 2. 
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Table 1. Composition of the whole population and the training and blind sets used in 
the study. 
 
Dataset Euploid Trisomy 21 Trisomy 18 Trisomy 13 Triploidy Turner Other 
Total 108112 432 166 56 35 63 118 
Training 72054 

(reduced 
to 5002) 

295 115 37 29 45 79 

Blind 36058 137 51 19 6 18 39 
 
 

 

 

 

 

Table 2. The results of the proposed system for the “blind set” for Stages 1 and 2. 
 

Results of Stage 1: Risk category Blind set (n=36328) 
Euploid (n=18546) N=36058 (51%) 
Trisomy 21 (n=135) N=137 (99%) 
Other aneuploidy (n=115) N=133 (87%) 
  
Results of Stage 2: no-risk category  
Euploid (n=7895) N=18546 (43%) 
Trisomy 21 (n=2) N=135 (2%) 
Other aneuploidy (n=2) N=115 (2%) 
  
Results of Stage 2: moderate-risk category  
Euploid (n=10464) N=18546 (56%) 
Trisomy 21 (n=83) N=135 (62%) 
Other aneuploidy (n=61) N=115 (53%) 
  
Results of Stage 2: moderate-risk category  
Euploid (n=187) N=18546 (1%) 
Trisomy 21 (n=50) N=135 (37%) 
Other aneuploidy (n=52) N=115 (45%) 
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