

Uterine artery pulsatility index at 12, 22, 32 and 36 weeks' gestation in screening for pre-eclampsia

N. O'GORMAN*, G. TAMPAKOUDIS*, A. WRIGHT+, D. WRIGHT+ and K. H. NICOLAIDES*

*Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK; †Institute of Health Research, University of Exeter, Exeter, UK

KEYWORDS: Bayes' theorem; impaired placentation; pre-eclampsia; pyramid of pregnancy care; screening; uterine artery Doppler

ABSTRACT

Objective To examine the distribution of uterine artery pulsatility index (UtA-PI) at 12, 22, 32 and 36 weeks' gestation in singleton pregnancies which develop pre-eclampsia (PE) and examine the performance of this biomarker in screening for PE.

Methods UtA-PI was measured in 92712 singleton pregnancies at 11–13 weeks, in 67605 cases at 19–24 weeks, in 31741 at 30–34 weeks and in 5523 at 35–37 weeks. Bayes' theorem was used to combine the a-priori risk from maternal characteristics and medical history with UtA-PI. The performance of screening for PE requiring delivery < 32, at 32+0 to 36+6, < 37 and \geq 37 weeks' gestation was estimated. The results of combined screening were compared to those of screening by UtA-PI and by maternal factors alone.

Results In pregnancies that developed PE, UtA-PI was increased and the separation in multiples of the median (MoM) values from normal was greater with earlier, compared to later, gestational age at which delivery for PE became necessary. Additionally, the slope of regression lines of UtA-PI MoM with gestational age at delivery in pregnancies that developed PE increased with increasing gestational age at screening. The detection rate (DR), at a 10% false-positive rate (FPR), for PE delivering < 32 weeks was 71% and 88% with combined screening at 11-13 and 19-24 weeks, respectively, and the DR for PE delivering at 32 + 0 to 36 + 6 weeks was 52%, 63% and 71% with screening at 11-13, 19-24 and 30-34 weeks, respectively. However, the DR of PE delivering \geq 37 weeks was only about 40%, irrespective of the gestational age at screening. The performance of screening by the approach utilizing Bayes' theorem was superior to that of using a percentile cut-off of UtA-PI for gestational age.

Conclusions The performance of combined screening with maternal factors and UtA-PI is superior for detection of early, compared to late, PE and, to a certain extent, improves with advancing gestational age at screening. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

INTRODUCTION

Pre-eclampsia is thought to be the consequence of impaired placentation manifested in increased impedance to flow in the uterine arteries $(UtAs)^{1-12}$. Several UtA Doppler studies have reported that, in pregnancies that develop PE, especially in those requiring early delivery, the pulsatility index (PI) is increased in the first, second and third trimesters of pregnancy⁴⁻¹².

There are two approaches for assessing the value of increased impedance to flow in the UtAs in the prediction of PE. The traditional approach is to examine the proportion of affected and unaffected pregnancies with abnormal Doppler results, defined either qualitatively by the presence of unilateral or bilateral notching of the waveform, or quantitatively by a cut-off in the measurement of various indices of impedance to flow, either corrected or uncorrected for gestational age¹². We have proposed that a better approach to screening for PE is to use Bayes' theorem to combine the *a-priori* risk from maternal characteristics and medical history with the measurement of biomarkers¹³⁻¹⁵. However, UtA-PI is dependent on variables from maternal characteristics and medical history and, for its effective use in risk assessment and screening, these covariates need to be taken into account. This can be achieved by standardizing UtA-PI levels into multiples of the normal median (MoM)¹⁶. Our approach assumes that if the pregnancy was to continue indefinitely all women would develop PE and whether they do so or not before a

Accepted: 9 November 2015

Correspondence to: Prof. K. H. Nicolaides, Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, UK (e-mail: kypros@fetalmedicine.com)

specified gestational age depends on competition between delivery before or after development of PE. The effect of maternal factors and biomarkers is to modify the mean of the distribution of gestational age at delivery with PE so that, in pregnancies at low risk for PE, the gestational-age distribution is shifted to the right with the implication that, in most pregnancies, delivery will actually occur before development of PE. In high-risk pregnancies the distribution is shifted to the left and the smaller the mean gestational age the higher is the risk for PE.

The objectives of this study were to present the distribution of UtA-PI values at 11-13, 19-24, 30-34 and 35-37 weeks' gestation in pregnancies that develop PE and examine the performance of screening for PE by UtA-PI at these stages in pregnancy.

METHODS

Study population

The data for this study were derived from prospective screening for adverse obstetric outcomes in women attending three routine hospital visits at King's College Hospital, University College London Hospital and Medway Maritime Hospital, UK, between January 2006 and March 2014. In the first visit, at 11+0 to 13+6 weeks' gestation, we recorded maternal characteristics and medical history and performed combined screening for aneuploidy¹⁷. The second visit, at 19 + 0 to 24 + 6 weeks' gestation, and third visit, initially at 30+0 to 34 + 6 weeks and subsequently at 35 + 0 to 37 + 6 weeks, included ultrasound examination of the fetal anatomy and estimation of fetal size from measurement of fetal head circumference, abdominal circumference and femur length. Gestational age was determined by the measurement of fetal crown-rump length at 11-13 weeks or the fetal head circumference at 19–24 weeks^{18,19}.

Written informed consent was obtained from women agreeing to participate in a study on adverse pregnancy outcome, which was approved by the ethics committee of each participating hospital. The inclusion criteria for this study were singleton pregnancy delivering phenotypically normal live birth or stillbirth at or after 24 weeks' gestation. Pregnancies with aneuploidy or major fetal abnormality and those ending in termination, miscarriage or fetal death before 24 weeks were excluded.

Patient characteristics

Patient characteristics included maternal age, racial origin (Caucasian, Afro-Caribbean, South Asian, East Asian and mixed), method of conception (spontaneous/assisted conception requiring the use of ovulation drugs/*in-vitro* fertilization), cigarette smoking during pregnancy, medical history of chronic hypertension, diabetes mellitus, systemic lupus erythematosus or antiphospholipid syndrome, family history of PE in the mother of the patient and obstetric history including parity (parous/nulliparous if no previous pregnancy at or after 24 weeks), previous pregnancy with PE, gestational age at delivery and birth weight of the neonate in the last pregnancy and interval in years between birth of the last child and estimated date of conception of the current pregnancy. Maternal height was measured at the first visit and maternal weight at each visit.

Uterine artery pulsatility index

First- and third-trimester Doppler ultrasound examinations were carried out transabdominally, however in the second trimester a transvaginal approach was used because the cervical length was also measured. At 11 + 0to 13 + 6 weeks' gestation, a sagittal section of the uterus was obtained and the cervical canal and internal cervical os were identified. Subsequently, the transducer was gently tilted from side to side and color flow mapping was used to identify each UtA along the side of the cervix and uterus at the level of the internal $os^{4,5}$. At 19+0to 24 + 6 weeks, women were asked to empty their bladder and were placed in the dorsal lithotomy position. The ultrasound probe was inserted into the vagina and advanced into the left and right lateral fornices. The UtAs were identified using color Doppler at the level of the internal cervical os^{20} . At 30 + 0 to 37 + 6 weeks, color Doppler was used to identify each UtA at the apparent crossover with the external iliac arteries⁶.

After identification of each UtA, pulsed-wave Doppler was used with the sampling gate set at 2 mm to cover the whole vessel. Care was taken to ensure that the angle of insonation was $< 30^{\circ}$ and the peak systolic velocity was > 60 cm/s so that the UtA, rather than the arcuate artery, was examined. When three similar waveforms were obtained consecutively, the PI was measured and the mean PI of the left and right arteries was calculated.

All Doppler studies were carried out by sonographers who had received the Certificate of Competence in Doppler of The Fetal Medicine Foundation (www. fetalmedicine.com).

Outcome measures

Data on pregnancy outcome were collected from the hospital maternity records or the general medical practitioners of the women. The obstetric records of all women with pre-existing or pregnancy-associated hypertension were examined to determine if the condition was PE, as defined by the International Society for the Study of Hypertension in Pregnancy²¹. The outcome measures for this study were PE delivering < 32, at 32 + 0 to 36 + 6, < 37 and ≥ 37 weeks' gestation.

Statistical analysis

Competing-risks model

The distribution of gestational age at delivery with PE was defined by two components: first, the prior distribution based on maternal characteristics¹³ and second, the distribution of UtA-PI MoM values with gestational age at delivery in pregnancies affected by PE. The values of

UtA-PI were log₁₀-transformed to achieve homogeneity of variance and approximate Gaussian distributional form. Each measured value in the unaffected and PE pregnancies was expressed as a MoM, adjusting for characteristics found to provide a substantive contribution to the log₁₀-transformed value¹⁶. In the PE group, regression analysis demonstrated that the log₁₀ MoM UtA-PI changed linearly with gestational age at delivery and this linear relationship was assumed to continue until the mean \log_{10} MoM reached zero, beyond which the mean was taken as zero. The point at which the mean \log_{10} MoM reached zero was determined using the method of least squares. Standard errors were obtained using bootstrapping. Risks of PE were obtained by applying Bayes' theorem to derive the posterior distribution of gestational age at delivery with PE from the maternal-factors specific prior distribution¹³ and the likelihood function of UtA-PI. The likelihood function comprised the regression of log_{10} MoM UtA-PI on gestational age at delivery with PE.

Model-based estimates of screening performance using Bayes' theorem

To provide model-based estimates of screening performance, the following procedure was adopted. First, we obtained the dataset of 120492 singleton pregnancies, including 2704 (2.2%) with PE, that was previously used to develop a model for PE based on maternal demographic characteristics and medical history^{13,22}. Second, for each of the records, UtA MoM values were simulated from the fitted multivariate Gaussian distribution for log-transformed MoM values. Third, risks were obtained using the competing-risks model from the simulated MoM values and the pregnancy characteristics. These three steps were applied to the pregnancies within the normal group with no restriction on the time of delivery. Fourth, for a given false-positive rate, risks from the normal group were used to define a risk cut-off. The proportion of PE risks was then used to obtain an estimate of the associated detection rate (DR). The area under the receiver-operating characteristics curve (AUC) was also calculated. The simulations were repeated 10 times to reduce variability due to the simulation process and provide suitably precise model-based estimates of performance.

Empirical performance of screening

Five-fold cross validation was used to assess the performance of screening for subgroups of PE according to gestational age at delivery, by models combining maternal factors with UtA-PI. The data were divided into five equal subgroups, the model was then fitted five times to different combinations of four of the five subgroups and used to predict risk of PE in the remaining one-fifth of the data. In each case, the maternal-factor model and the regression models were fitted to the training dataset comprising four-fifths of the data and used to produce risks for the hold-out sample comprising the remaining one-fifth of the data.

Performance of UtA-PI adjusted for gestational age

Regression analysis of log_{10} UtA-PI on gestational age at the time of measurement was used to determine the 90th and 95th percentiles for unaffected pregnancies specific to gestational age at the time of measurement. Five-fold cross validation was used to assess the performance of screening for PE using the 90th and 95th percentiles of UtA-PI.

The statistical software package R was used for data analyses²³ and the survival package²⁴ was used for fitting the maternal-factors model.

RESULTS

Characteristics of the study population

The characteristics of the study population of singleton pregnancies with measurements of UtA-PI are summarized in Table 1. In the first phase of the study UtA-PI was measured only in the first-trimester visit but this was subsequently extended to the second- and then the third-trimester visits.

Distribution of log₁₀ MoM values of UtA-PI in pre-eclampsia

In pregnancies that developed PE, UtA-PI MoM was inversely related to gestational age at delivery for each stage of screening (Figure 1). The regression equations are given in Table S1. The SD for \log_{10} UtA-PI MoM in unaffected pregnancies and in those that developed PE are given in Table S2.

Performance of screening for pre-eclampsia by maternal factors and UtA-PI

Empirical and model-based performance of screening for PE by maternal factors and UtA-PI at 11-13, 19-24, 30-34 and 35-37 weeks' gestation are shown in Tables 2 and S3 and Figure 2. In general there was good agreement between empirical and model-based results and all except two model-based results were within the 95% CI of the empirical data.

On the basis of the results from combined screening, the following conclusions can be drawn: first, the DR was higher for early compared to late PE; second, the DR of PE delivering < 32, 32 + 0 to 36 + 6 and < 37 weeks' gestation was higher with screening at 19-24 weeks than at 11-13 weeks; third, the DR of PE delivering at 32+0 to 36+6 weeks was higher with screening at 30-34 weeks than at 19-24 weeks, and fourth, the performance of screening for PE delivering ≥ 37 weeks was poor, irrespective of the gestational age at screening.

Performance of screening for pre-eclampsia by UtA-PI above the 90th and 95th percentiles for gestational age

 Log_{10} UtA-PI decreased linearly with gestational age at 11–14, 19–24 and 30–34 weeks' gestation, but did not

						22.22.22
$\begin{array}{l} PE\\ (n=2198) \end{array}$	Normal $(n = 65762)$	PE(n = 1843)	Normal $(n = 31 035)$	PE(n = 706)	Normal (n = 5431)	$\begin{array}{c} PE \\ (n=92) \end{array}$
35.1) 31.4 (26.6–35.8	30.8 (26.2-34.7)	31.3 (26.4-35.8)*	31.3 (26.8-35.0)	31.6 (26.9–35.7)	31.2 (26.5-35.0)	33.0 (27.8-35.7)
76.0) 72.0 (62.2-86.0)* 70.0 (63.0-80.2)	76.8 (67.0-90.6)	75.4 (67.7-85.6)	82.9 (72.0-97.2)	79.0 (70.6-90.0)	85.0 (77.3-98.4)
69) 163 (159–168)	164(160 - 169)	163(159 - 168)	165(160 - 169)	164(160 - 168)	164 (160 - 168)	164(160 - 170)
28.0) 27.0 (23.4-31.9)* 25.9 (23.4–29.6)	28.8 (25.2-33.5)	27.8 (25.2-31.5)	30.7 (27.3-35.4)	29.3 (26.3-33.2)	31.2 (28.6-35.2)
[3.1) 12.7 (12.3–13.1) 22.2 (21.6–22.7)	22.3 (21.6-22.7)	32.3 (32.0-32.9)	32.2 (32.0-32.7)	36.1 (36.0-36.4)	36.1 (35.9-36.4)
*		*		*		
.4) 1247 (56.7)	46275 (70.4)	1002(54.4)	21749(70.1)	383(54.3)	3819(70.3)	62 (67.4)
.3) 736 (33.5)	$13067\ (19.9)$	694 (37.7)	5767 (18.6)	265 (37.5)	1089(20.1)	22 (23.9)
() 123 (5.6)	3177 (4.8)	81(4.4)	1809(5.8)	33 (4.7)	221(4.1)	4 (4.4)
() 40 (1.8)	1616(2.5)	27(1.5)	969(3.1)	12(1.7)	112(2.1)	1 (1.1)
52 (2.4)	1627(2.5)	39 (2.1)	741 (2.4)	13(1.8)	190(3.5)	3 (3.3)
242 (11.0)*	752 (1.1)	$222 (12.1)^*$	353(1.1)	$104(14.7)^*$	72(1.3)	$10 (10.9)^*$
53 (2.4)*	530 (0.8)	44 (2.4)*	296(1.0)	$17(2.4)^{*}$	55(1.0)	92 (100)
$14 (0.6)^*$	116(0.2)	$12 (0.7)^*$	61(0.2)	1 (0.1)	13(0.2)	92 (100)
164 (7.5)*	6624 (10.1)	$136(7.4)^{*}$	2823 (9.1)	$48(6.8)^{*}$	541(10.0)	6 (6.5)
$178 (8.1)^*$	2401 (3.7)	$136(7.4)^{*}$	893 (2.9)	$35(5.0)^{*}$	183(3.4)	9 (9.8)*
.2) 527 (24.0)*	30 533 (46.4)	$451(24.5)^{*}$	14777(47.6)	192 (27.2)*	2798 (51.5)	$15 (16.3)^{*}$
306 (13.9)*	2030(3.1)	256(13.9)*	902 (2.9)	$89 (12.6)^*$	127 (2.3)	$12 (13.0)^*$
.8) 1365 (62.1)*	33 199 (50.5)	$1136 (61.6)^{*}$	15356(49.5)	$425(60.2)^{*}$	2506(46.1)	65 (70.7)*
.8) 4.0 (2.3–6.8)*	3.0(1.9-5.0)	4.0 (2.3-7.0)*	3.0 (2.0-4.9)	3.7 (2.3-6.8)*	3.1(2.1 - 5.1)	4.2 (2.3–9.6)*
n (%). Comparison with rome: SLE, systemic lupu	normal group by chi-s s ervthematosus.	quare or Fisher's exa	ict tests for categoric	al variables and Man	nn-Whitney U-test fo	or continuous
	3.1) 12.7 (12.3 - 13.1) 4) 12.47 (56.7) 3) 736 (33.5) 12.3 (5.6) 40 (1.8) 52 (2.4) 12.4 (1.0)* 52 (2.4)* 14 (0.6)* 14 (0.6)* 178 (8.1)* 22) 527 (24.0)* 306 (13.9)* 8) 1365 (62.1)* 8) $1.06 (13.9)*$ 8) $1.06 (2.3-6.8)*$ 20. Systemic lumithome: SLE systemic lumithome: SLE systemic lumithome: systemic lumithome: systemic lumithome: systemic lumithome: systemic lumithome: SLE systemic lumithome: SL	3.1) 12.7 (12.3 - 13.1) 22.2 (21.6 - 22.7) 4. 12.47 (56.7) 46.275 (70.4) 3. 736 (33.5) 13.067 (19.9) 123 (5.6) 3177 (4.8) 40 (1.8) 1616 (2.5) 52 (2.4) 1627 (2.5) 14 (0.6)* 1627 (2.5) 14 (0.6)* 116 (0.2) 164 (7.5)* 6624 (10.1) 164 (7.5)* 6624 (10.1) 178 (8.1)* 2401 (3.7) 20 306 (13.9)* 30533 (46.4) 306 (13.9)* 306 (13.9)* 306 (13.9)* 300 (13.9)* 307 (199 (50.5) 8) $4.0 (2.3 - 6.8)*$ 300 (199 (50.5) 8) $4.0 (2.3 - 6.8)*$ 300 (199 by chistone of the stochard at constants.	3.1) 12.7 (12.3-13.1) 22.2 (21.6-22.7) 22.3 (21.6-22.7) 4. 12.47 (56.7) 46.275 (70.4) 1002 (54.4) 3. 736 (33.5) 13.067 (19.9) 694 (37.7) 12.3 (5.6) 31.77 (4.8) 81 (4.4) 4.0 (1.8) 16.16 (2.5) 2.7 (1.5) 5.2 (2.4) 16.27 (2.5) 39 (2.1) 5.2 (2.4) 16.27 (2.5) 39 (2.1) 5.3 (2.4)* 5.30 (0.8) 144 (2.4)* 144 (0.2) 116 (0.2) 116 (0.2) 144 (0.6)* 116 (0.2) 12 (0.7)* 164 (7.5)* 66.24 (10.1) 136 (7.4)* 178 (8.1)* 203 (3.1) 136 (7.4)* 178 (8.1)* 305 (3.1) 136 (7.4)* 8 1365 (62.1)* 3053 (46.4) 451 (24.5)* 8 1365 (62.1)* 3053 (46.4) 256 (13.9)* 8 1365 (62.1)* 305 (3.1) 136 (61.6)* 8 1365 (62.1)* 30 (1.9-5.0) 4.0 (2.3-7.0)* 9 (%). Comparison with normal group by chi-square or Fisher's examples the automaticans	3.1) 12.7 (12.3 - 13.1) 22.2 (21.6 - 22.7) 22.3 (21.6 - 22.7) 32.3 (32.0 - 32.9) 4) 12.7 (12.3 - 13.1) 22.2 (21.6 - 22.7) 22.3 (21.6 - 22.7) 32.3 (32.0 - 32.9) 3) 736 (33.5) 13 067 (19.9) 694 (37.7) 5767 (18.6) 13 77 (4.8) 81 (4.4) 1809 (5.8) 40 (1.8) 1616 (2.5) 27 (1.5) 969 (3.1) 741 (2.4) 741	3.1) $12.7(12.3-13.1)$ $22.2(21.6-22.7)$ $22.3(21.6-22.7)$ $32.3(32.0-32.9)$ $32.2(32.0-32.7)$ 4) $12.7(5.7)$ $46.275(70.4)$ $1002(54.4)$ $21749(70.1)$ $383(54.3)$ 3) $736(33.5)$ $13067(19.9)$ $694(37.7)$ $5767(18.6)$ $2265(37.5)$ 3) $736(33.5)$ $13067(19.9)$ $694(37.7)$ $5767(18.6)$ $265(37.5)$ 0 $123(5.6)$ $3177(4.8)$ $81(4.4)$ $1809(5.8)$ $33(4.7)$ 0 $123(5.6)$ $3177(4.8)$ $81(4.4)$ $1809(5.8)$ $33(4.7)$ 0 $123(5.6)$ $3177(4.8)$ $81(4.4)$ $1809(5.8)$ $33(4.7)$ 1 $222(2.4)$ $1627(2.5)$ $39(2.1)$ $741(2.4)$ $13(1.8)$ $242(11.0)^*$ $530(0.8)$ $44(2.4)^*$ $256(1.0)$ $17(2.4)^*$ $53(2.4)^*$ $530(0.8)$ $44(2.4)^*$ $296(1.0)$ $17(2.4)^*$ $14(0.6)^*$ $116(0.2)$ $12(7.4)^*$ $296(1.0)$ $17(2.4)^*$ $144(7.5)^*$ $530(0.8)$ $44(2.4)^*$ $2923(9.1)$ $102(2.2.2)^*$ 11	3.1) $12.7(12.3-13.1)$ $22.2(21.6-22.7)$ $22.3(21.6-22.7)$ $32.3(32.0-32.9)$ $32.2(32.0-32.7)$ $56.1(36.0-36.4)$ 3.1) $12.7(12.3-13.1)$ $22.2(21.6-22.7)$ $22.3(21.6-22.7)$ $32.3(32.0-32.7)$ $33.1(3.6.0-36.4)$ 3.1) $736(33.5)$ $13067(19.9)$ $694(37.7)$ $5767(18.6)$ $265(37.5)$ $1089(20.1)$ 1.23(5.6) $3177(4.8)$ $81(4.4)$ $1809(5.8)$ $33(4.7)$ $221(4.1)$ 1.23(5.6) $3177(4.8)$ $81(4.4)$ $1809(5.8)$ $33(4.7)$ $122(1.7)$ $112(2.1)$ 4.0(1.8) $1616(2.5)$ $277(1.5)$ $969(3.1)$ $12(1.7)$ $112(2.1)$ $190(3.5)$ 3.242(11.0)* $752(1.1)$ $222(12.1)*$ $353(1.1)$ $104(14.7)*$ $72(1.3)$ 3.242(11.0)* $752(1.1)$ $126(7.4)*$ $236(1.0)$ $17(2.4)*$ $55(1.0)$ 1.40(0.6)* $116(0.2)$ $126(7.4)*$ $236(1.0)$ $17(2.4)*$ $55(1.0)$ 1.64(7.5)* $6624(10.1)$ $136(7.4)*$ $893(2.9)$ $35(5.0)*$ $183(3.4)$ 3.6(13.9)* $2030(3.1)$ $136(7.4)*$ $893(2.9)$ $35(5.0)*$ $133(3.4)$ 2.0) $527(24.0)*$ $3053(46.4)$ $451(24.5)*$ $14777(47.6)$ $192(27.2)*$ $2798(51.5)$ 3.06(13.9)* $2030(3.1)$ $256(13.9)*$ $902(2.9)$ $89(12.6)*$ $256(46.1)$ 8) $1365(62.1)*$ $33199(50.5)$ $1136(61.6)*$ $15356(49.5)$ $3.7(2.3-6.8)*$ $3.1(2.1-5.1)$ 8) $166(0.2)^{11}$ $30(1.9-5.0)$ $4.0(2.3-7.0)^{11}$ $30(2.0-4.9)$ $3.7(2.3-6.8)*$ $3.1(2.1-5.1)$ 3.6(60.2)* $3.00(1.9-5.0)$ $4.0(2.3-7.0)^{11}$ $3.0(2.0-4.9)$ $3.7(2.3-6.8)^{11}$ $3.1(2.1-5.1)$ 8) $1(96)$. Comparison with normal group by chi-square or Fisher's exact tests for categorical variables and Mann-Whitney U -test for measure.

Table 1 Maternal and pregnancy characteristics in women with singleton pregnancy screened at different weeks for prediction of pre-eclampsia (PE)

Figure 1 Relationship between uterine artery pulsatility index (UtA-PI) multiples of the median (MoM) and gestational age (GA) at delivery in pregnancies with pre-eclampsia, with screening at: (a) 11-13, (b) 19-24, (c) 30-34 and (d) 35-37 weeks' gestation. Regression lines (- - - -) are shown.

Table 2 Empirical and model-based detection rates of screening for pre-eclampsia (PE) by maternal factors and a combination of maternal factors and uterine artery pulsatility index at 11–13, 19–24, 30–34 and 35–37 weeks' gestation

Screening	Detection rate of PE delivering:								
	< 32 weeks		32 + 0 to $36 + 6$ weeks		< 37 weeks		\geq 37 weeks		
	<i>Empirical</i> (95% CI) (%) (n/N)	Model (%)	Empirical (95% CI) (%) (n/N)	Model (%)	<i>Empirical</i> (95% CI) (%) (n/N)	Model (%)	<i>Empirical</i> (95% CI) (%) (n/N)	Model (%)	
Maternal factors $FPR = 5\%$									
11–13 weeks 19–24 weeks 30–34 weeks 35–37 weeks	44 (36–52) 68/155 44 (36–52) 65/148	41 41	31 (26–35) 136/445 32 (28–37) 120/372 30 (23–38) 48/161	31 31 31	34 (30–38) 204/600 36 (31–40) 185/520 31 (24–39) 52/166	34 34 31	26 (24–28) 418/1598 26 (24–29) 350/1323 29 (26–33) 159/540 24 (16–35) 21/86	26 26 26 26	
FPR = 10% $11-13 weeks$ $19-24 weeks$ $30-34 weeks$ $35-37 weeks$ $Combined$	56 (48–64) 87/155 55 (47–64) 82/148	52 52	44 (40–50) 200/455 44 (38–49) 162/372 42 (34–50) 67/161	45 45 45	48 (44–52) 287/600 47 (43–51) 244/520 43 (35–51) 71/166	47 47 45	37 (35–40) 596/1598 37 (34–39) 485/1323 41 (37–46) 224/540 31 (22–42) 27/86	37 37 37 37	
FPR = 5% 11-13 weeks 19-24 weeks 30-34 weeks 35-37 weeks FPP = 10%	57 (49–65) 88/155 79 (72–85) 117/148	59 79	40 (35–44) 176/445 56 (51–61) 208/372 62 (54–70) 100/161	39 50 59	44 (40–48) 264/600 63 (58–67) 325/520 63 (55–71) 105/166	44 57 59	28 (26–30) 447/1598 30 (28–33) 397/1323 32 (28–36) 173/540 26 (17–36) 22/86	27 28 28 29	
11–13 weeks 19–24 weeks 30–34 weeks 35–37 weeks	71 (63–78) 110/155 88 (81–93) 130/148	71 88	53 (48–58) 236/445 68 (63–72) 252/372 75 (68–82) 121/161	52 63 71	58 (54–62) 346/600 73 (69–77) 382/520 76 (69–82) 126/166	57 70 71	39 (36-41) 621/1598 42 (40-45) 560/1323 42 (37-46) 225/540 36 (26-47) 31/86	38 40 39 41	

change significantly with gestational age at 35-37 weeks. The regression equations are given in Table S4. The normal ranges and values of UtA-PI in pregnancies that developed PE are shown in Figure 3. The DRs of PE by UtA-PI above the 90th and 95th percentiles for gestational age at 11–13, 19–24, 30–34 and 35–37 weeks' gestation are shown in Table S5. In general, the performance of screening by this approach was inferior to that achieved by combined screening, especially for late PE (Table 2 and Figure 4).

DISCUSSION

Principal findings of the study

This study highlights four findings with clinical implications. First, in pregnancies that develop preterm PE, UtA-PI is increased and the separation in MoM values from normal is greater with earlier, compared to later, gestational age at which delivery for PE becomes necessary. Consequently, the performance of screening is superior for PE delivering < 32 than at 32 + 0 to

Figure 2 Empirical detection rate (DR) of pre-eclampsia delivering: (a) < 32 weeks; (b) at 32 + 0 to 36 + 6; (c) < 37; and (d) ≥ 37 weeks' gestation, when screening by maternal factors (•) and a combination of maternal factors with uterine artery pulsatility index (o) at 11–13, 19–24, 30–34 and 35–37 weeks' gestation. Vertical lines represent 95% CIs. Adjacent circles without 95% CI represent model-based DR. FPR, false-positive rate; GA, gestational age.

Figure 3 Uterine artery pulsatility index (UtA-PI) in pregnancies that developed pre-eclampsia and delivered < 32 weeks (\circ), at 32 + 0 to 36 + 6 weeks (\circ) or ≥ 37 (\circ) weeks' gestation, with screening at: (a) 11–13; (b) 19–24; (c) 30–34; and (d) 35–37 weeks' gestation. Values are plotted on normal reference ranges for gestational age (______, median; _ - _ , 10th and 90th percentiles; _____, 5th and 95th percentiles).

36 + 6 weeks. Second, the slope of the regression lines of UtA-PI MoM with gestational age at delivery in pregnancies that develop PE increases with increasing gestational age at screening. Consequently, the performance of screening for PE delivering < 32 weeks is superior with screening at 19–24 than at 11–13 weeks and the performance of screening for PE delivering at 32+0 to 36+6 weeks is superior with screening at 30–34 than at 19–24 or 11–13 weeks. Third, the regression lines of UtA-PI MoM with gestational age at delivery in pregnancies that develop

PE intersect 1 MoM at about 40 weeks and this marker shows little or no discriminatory power for term PE; consequently, the performance of screening for PE \geq 37 weeks is poor irrespective of the gestational age at screening. Fourth, the performance of screening for PE by a model combining UtA-PI with maternal characteristics and medical history is superior to that by UtA-PI alone; this is particularly so for PE delivering \geq 37 weeks for which the performance of screening by UtA-PI alone is poor. A major advantage of the approach utilizing Bayes' theorem

Figure 4 Empirical detection rate (DR) of pre-eclampsia delivering: (a) < 32 weeks; (b) at 32 + 0 to 36 + 6; (c) < 37; and (d) \geq 37 weeks' gestation, when screening by uterine artery pulsatility index (UtA-PI) above the 90th percentile for gestational age (GA) (•) and by a combination of maternal factors with UtA-PI (o) at 11–13, 19–24, 30–34 and 35–37 weeks' gestation. Vertical lines represent 95% CIs. FPR, false-positive rate.

is that, in addition to UtA-PI, several other biomarkers can be combined with maternal factors to improve the overall performance of screening.

Strengths and limitations

The strengths of this screening study for PE in the three trimesters of pregnancy are first, examination of a large population of pregnant women attending for routine care, second, recording of data on maternal characteristics and medical history to identify known risk factors associated with PE, third, use of a specific methodology and appropriately trained doctors to measure UtA-PI, fourth, expression of the values of UtA-PI as MoMs after adjusting for factors that affect the measurements, and fifth, use of Bayes' theorem to combine the prior risk from maternal factors with UtA-PI to estimate patient-specific risks and the performance of screening for PE delivering at different stages of pregnancy.

A potential limitation of the study is that the performance of screening by a model derived and tested using the same dataset is overestimated. We used cross validation to reduce this effect and demonstrated that the modeled and empirical performance were similar, presumably because the study population was large and the number of variables small.

Comparison with previous studies

Several studies have documented that development of PE, especially preterm PE, is associated with an increase in UtA-PI during the first, second and third trimesters

of pregnancy^{4–12}. In this study we examined the performance of UtA-PI on its own and in combination with maternal factors in the prediction of early, intermediate and late PE and documented the relationship between gestational age at screening and performance of the test.

Clinical implications of the study

In a proposed new pyramid of pregnancy care²⁵, assessment at 11–13 weeks aims to identify the group at high risk of developing preterm PE and, through pharmacological intervention, with such medications as low-dose aspirin, reduce the prevalence of the disease^{26,27}. Measurement of UtA-PI is an essential component of such assessment, which also includes measurement of mean arterial pressure and serum placental growth factor²⁸.

Assessment in the second and third trimesters aims to estimate the patient-specific risk of developing PE and, on the basis of such risk, define the subsequent management of pregnancy, including the timing and content of subsequent visits and decide on appropriate time, method and place for delivery. We found that the performance of UtA-PI for PE delivering \geq 37 weeks is poor irrespective of the gestational age at screening. However, prediction of PE delivering < 32 and at 32 + 0to 36+6 weeks is better if screening is carried out at 22 weeks, rather than 12 weeks. In this context, the main value of the assessment at 22 weeks is to identify first, the high-risk group for development of early PE who would then require close monitoring of fetal growth and wellbeing as well as blood pressure and proteinuria at 24-32 weeks and second, the high-risk group for

preterm PE who would require reassessment at around 32 weeks and, on the basis of such assessment, identify a high-risk group in need of close monitoring at 32 + 0 to 36 + 6 weeks. Future research should aim to identify better biomarkers for PE delivering ≥ 37 weeks.

ACKNOWLEDGMENTS

This study was supported by a grant from The Fetal Medicine Foundation (Charity No: 1037116) and by the European Union 7th Framework Programme -FP7-HEALTH-2013-INNOVATION-2 (ASPRE Project # 601852).

REFERENCES

- Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 1967; 93: 569–579.
- Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for gestational age infants. Br J Obstet Gynaecol 1986; 93: 1049–1059.
- 3. Pijnenborg R. The placental bed. Hypertens Pregnancy 1996; 15: 7-23.
- Martin AM, Bindra R, Curcio P, Cicero S, K H Nicolaides. Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11–14 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 583–586.
- Plasencia W, Maiz N, Poon L, Yu C, Nicolaides KH. Uterine artery Doppler at 11+0 to 13+6 weeks and 21+0 to 24+6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2008; 32: 138–146.
- Albaiges G, Missfelder-Lobos H, Lees C, Parra M, Nicolaides KH. One-stage screening for pregnancy complications by color Doppler assessment of the uterine arteries at 23 weeks' gestation. *Obstet Gynecol* 2000; 96: 559–564.
- Papageorghiou AT, Yu CKH, Bindra R, Pandis G, Nicolaides KN. Multicentre screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation. Ultrasound Obstet Gynecol 2001; 18: 441–449.
- Yu CK, Smith GC, Papageorghiou AT, Cacho AM, Nicolaides KH. An integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. *Am J Obstet Gynecol* 2005; 193: 429–436.
- Gallo DM, Poon LC, Akolekar R, Syngelaki A, Nicolaides KH. Prediction of preeclampsia by uterine artery Doppler at 20–24 weeks' gestation. *Fetal Diagn Ther* 2013; 34: 241–247.
- Lai J, Poon LC, Pinas A, Bakalis S, Nicolaides KH. Uterine artery Doppler at 30–33 weeks' gestation in the prediction of preeclampsia. *Fetal Diagn Ther* 2013; 33: 156–163.

- Tayyar A, Garcia-Tizon Larroca S, Poon LC, Wright D, Nicolaides KH. Competing risk model in screening for preeclampsia by mean arterial pressure and uterine artery pulsatility index at 30–33 weeks' gestation. *Fetal Diagn Ther* 2014; 36: 18–27.
- Cnossen JS, Morris RK, ter Riet G, Mol BW, van der Post JA, Coomarasamy A, Zwinderman AH, Robson SC, Bindels PJ, Kleijnen J, Khan KS. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. CMAJ 2008; 178: 701-711.
- Wright D, Syngelaki A, Akolekar R, Poon LC, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. *Am J Obstet Gynecol* 2015; 213: 62.e1–10.
- Wright D, Akolekar R, Syngelaki A, Poon LC, Nicolaides KH. A competing risks model in early screening for preeclampsia. *Fetal Diagn Ther* 2012; 32: 171–178.
- Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. *Fetal Diagn Ther* 2013; 33: 8–15.
- Tayyar A, Guerra L, Wright A, Wright D, Nicolaides KH. Uterine artery pulsatility index in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol 2015; 45: 689–697.
- 17. Nicolaides KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn 2011; 31: 7–15.
- Robinson HP, Fleming JE. A critical evaluation of sonar crown rump length measurements. Br J Obstet Gynaecol 1975; 82: 702–710.
- Snijders RJ, Nicolaides KH. Fetal biometry at 14–40 weeks' gestation. Ultrasound Obstet Gynecol 1994; 4: 34–48.
- Papageorghiou AT, To MS, Yu CK, Nicolaides KH. Repeatability of measurement of uterine artery pulsatility index using transvaginal color Doppler. Ultrasound Obstet Gynecol 2001; 18: 456–459.
- Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the international society for the study of hypertension in pregnancy (ISSHP). *Hypertens Pregnancy* 2001; 20: IX-XIV.
- Andrietti S, Silva M, Wright A, Wright D, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 35–37 weeks' gestation. Ultrasound Obstet Gynecol 2015. doi: 10.1002/uog.15812. [Epub ahead of print]
- R Development Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2011; ISBN 3-900051-07-0, http://www.R-project.org/.
- Therneau T. A package for survival analysis in S. R package version 2.37-7, 2014; http://CRAN.R-project.org/package=survival.
- Nicolaides KH. Turning the pyramid of prenatal care. Fetal Diagn Ther 2011; 29: 183–196.
- Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, Forest JC, Giguere Y. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. *Obstet Gynecol* 2010; 116: 402–414.
- Roberge S, Nicolaides K, Demers S, Villa P, Bujold E. Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: a meta-analysis. Ultrasound Obstet Gynecol 2013; 41: 491–499.
- O'Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. Am J Obstet Gynecol 2015; 213: 62.e1-10.

SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Table S1 Regression equations of uterine artery pulsatility index multiples of the median in pregnancies that developed pre-eclampsia

Table S2 Standard deviation (SD) for \log_{10} uterine artery pulsatility index multiples of the median in unaffected pregnancies and those that developed pre-eclampsia

Table S3 Modelled and empirical areas under the receiver–operating characteristics curve (AUC) in screening for pre-eclampsia (PE) delivering < 32, < 37 and ≥ 37 weeks' gestation by maternal factors and a combination of maternal factors and uterine artery pulsatility index at 11–13, 19–24, 30–34 and 35–37 weeks' gestation

Table S4 Regression equations for the relationship between uterine artery pulsatility index and gestational age at assessment

Table S5 Detection rates of screening for pre-eclampsia (PE) by cut-off values of uterine artery pulsatility index above the 90th and 95th percentiles, adjusted for gestational age, at 11–13, 19–24, 30–34 and 35–37 weeks' gestation